
Silas: A High-Performance Machine Learning Foundation
for Logical Reasoning and Verification

Hadrien Bridea, Cheng-Hao Caib,d,e, Jie Dongc, Jin Song Donga,d, Zhé Hóua, Seyedali
Mirjalilif, Jing Sunb

aInstitute for Integrated and Intelligent Systems, Griffith University, Australia
bSchool of Computer Science, University of Auckland, New Zealand

cDependable Intelligence Pty. Ltd. (Depintel), Australia
dSchool of Computing, National University of Singapore, Singapore

eArtificial Intelligence Innovation and Commercialisation Centre, National University of Singapore
(Suzhou) Research Institute, China

fCentre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Australia

Abstract

This paper introduces a new high-performance machine learning tool named Silas,

which is built to provide a more transparent, dependable and efficient data analytics

service. We discuss the machine learning aspects of Silas and demonstrate the advan-

tage of Silas in its predictive and computational performance. We show that several

customised algorithms in Silas yield better predictions in a significantly shorter time

compared to the state-of-the-art. Another focus of Silas is on providing a formal foun-

dation of decision trees to support logical analysis and verification of learned prediction

models. We illustrate the potential capabilities of the fusion of machine learning and

logical reasoning by showcasing applications in three directions: formal verification of

the prediction model against user specifications, training correct-by-construction mod-

els, and explaining the decision-making of predictions.

Keywords: high-performance machine learning, ensemble trees, explainable artificial

intelligence, logical reasoning

Email addresses: h.bride@griffith.edu.au (Hadrien Bride), chenghao.cai@auckland.ac.nz
(Cheng-Hao Cai), jacob@depintel.com (Jie Dong), dongjs@comp.nus.edu.sg (Jin Song Dong),
z.hou@griffith.edu.au (Zhé Hóu), ali.mirjalili@laureate.edu.au (Seyedali Mirjalili),
jing.sun@auckland.ac.nz (Jing Sun)

Preprint submitted to Expert Systems with Applications February 5, 2021

1. Introduction

Machine learning has enjoyed great success in many research areas and industries,

including entertainment (Gomez-Uribe and Hunt, 2016), self-driving cars (Eliot and

Eliot, 2017), banking (Turkson et al., 2016), medical diagnosis (Kononenko, 2001),

shopping (Cumby et al., 2004), among many others. However, the wide adoption of5

machine learning raises the concern that most people use it as a “black-box” in their

data analytics pipeline. The ramifications of the black-box approach are multifold.

First, it may lead to unexpected results that are only observable after the deployment

of software products. For instance, Amazon’s Alexa offered prohibited contents to a

child (Post, 2016), IBM’s Watson recommended “unsafe and incorrect” cancer treat-10

ments (Ross and Swetlitz, 2018), etc. Some of these accidents result in lawsuits or even

lost lives with an immeasurable cost. Second, it prevents the adoption in some applica-

tions and industries where an explanation is mandatory or certain specifications must

be satisfied. For example, in the USA, it is required by law to give the reason why a

loan application is rejected. Additionally, recent machine learning models, such as neu-15

ral networks, often need considerable computational resources to run. For example, in

automatic speech recognition, acoustic models can be multi-layer neural networks with

more than ten millions of parameters that require several weeks to train on CPUs or sev-

eral days to train on GPUs (Hinton et al., 2012). Although these models can achieve

excellent prediction accuracy, industrial applications of such resource-consuming mod-20

els are still uneconomical. In the industry, there is a need for machine learning models

that are not only accurate but also explainable, verifiable and resource-efficient.

A fusion of machine learning and logical reasoning. In recent years, eXplainable AI

(XAI) has been gaining attention, and there is a surge of interest in studying how pre-

diction models work and how to provide formal guarantees for the models. A common25

theme in this space is to use statistical methods to analyse prediction models. On the

other hand, Bonacina recently envisaged that automated reasoning could be the key

to the advances of XAI and machine learning (Bonacina, 2017). This direction aligns

well with our interest of building a new machine learning tool with logic and reason-

ing as the engine to produce “white-box” prediction models. A “white-box” machine30

2

learning method in our vision should feature the following key points:

Explainability: The inner workings of produced predictive models should be inter-

pretable, and the user should be able to query the rationale behind the predictions.

Verifiability: The compliance of the produced predictive models with respect to user

specifications should be formally verifiable.35

Interactability: Data engineers should be able to guide the learning phase of predic-

tive models so that the models conform with given specifications.

Efficiency: Predictive models should only consume reasonable resources to complete

learning and prediction tasks.

Ensemble Trees. Towards this direction, we have been searching for a suitable ma-40

chine learning technique that (1) has excellent predictive performance and (2) is ideal

for logical reasoning and formal verification. We have found that some techniques

show outstanding performance but are difficult to manifest. For example, neural net-

works can have multi-layer architectures that model nonlinear data features but are hard

to explain using formal logic. On the other hand, linear methods are easy to explain be-45

cause they can be described using linear equations. However, data in the real world are

often nonlinear, so linear methods often do not perform well. Some techniques have

a solid probabilistic reasoning foundation, e.g., Bayesian methods, but it is difficult to

use formal logic to verify and explain these probabilistic models (Bishop, 2007). Dif-

ferent from the above machine learning techniques, ensemble trees learn data features50

using tree architectures, where each branch of a tree has specific meanings that can

be represented using formal logic. Moreover, ensemble trees have excellent predictive

performance that is sometimes better than deep learning on tabular data (Pafka, 2018).

Further, ensemble trees require less data pre-processing because symbolic represen-

tations can be directly taken as input. They are fundamentally different from neural55

networks that require data vectorisation as a pre-processing step. Ensemble trees have

attracted much attention in machine learning applications. A comparison of millions of

machine learning models on Kaggle showed that ensemble trees are the preferred meth-

3

ods for structured data, while neural networks and deep learning dominate unstructured

problems (Harasymiv, 2015).60

Contributions. The current gap in the literature is the lack of understanding of the in-

ternal mechanism of ensemble trees and their perceived black-box nature, which make

them impractical in critical applications (e.g. medicine, law and defence) as discussed

above. This gap motivated us to develop a new machine learning tool named Silas,

which is a fusion of ensemble trees learning and automated reasoning. The first part of65

this paper has the following contributions.

• We have developed the Silas toolkit to solve classification and regression prob-

lems in machine learning. Silas Education version has been made public and can

be downloaded from our website. 1

• We demonstrate that effective and efficient machine learning models can be built70

with a formal and explicit semantics that support automated reasoning.

• Silas targets high-performance applications of ensemble trees. Its predictive per-

formance is often better than industrial leaders of similar techniques. Silas im-

proves ensemble trees using a number of customised algorithms, e.g., decision

trees with a logical foundation, various sampling, weighting, and voting algo-75

rithms.

• Silas’s high-performance computing mechanisms are developed using our in-

house C++ functional & parallel programming framework and data storage &

management library, which are efficient and outperform competitors in term of

time and memory consumption. As machine learning becomes more prevalent80

1Silas Edu can be downloaded via Dependable Intelligence: https://www.depintel.com/silas_

download.html. Silas Edu supports binary classification and machine learning + logical reasoning func-

tionalities in Section 6. Moreover, editors and reviewers can access Silas’s multi-class classification

and regression functionalities via https://depintel.com/downloads/Private/SilasDemo_0-8-7_

linux_x64_8T.zip, and relevant documents via https://www.depintel.com/documentation/

v087/_build/html/index.html.

4

https://www.depintel.com/silas_download.html
https://www.depintel.com/silas_download.html
https://depintel.com/downloads/Private/SilasDemo_0-8-7_linux_x64_8T.zip
https://depintel.com/downloads/Private/SilasDemo_0-8-7_linux_x64_8T.zip
https://www.depintel.com/documentation/v087/_build/html/index.html
https://www.depintel.com/documentation/v087/_build/html/index.html

in everyday applications, Silas will provide increased productivity with lower

operating costs.

Additionally, we explore the applications of logical reasoning by showcasing the fol-

lowing four proofs-of-concept that illustrate the capabilities of the machine learning +

logical reasoning direction that we are currently pursuing:85

Model Audit concerns how to formally verify the correctness of very large prediction

models. Use cases of this module include: (1) checking whether a prediction

model meets various “soft” and “hard” criteria and (2) grading the model based

on the results.

Enforcement Learning concerns how to train prediction models that are correct-by-90

construction. A use case of this module is to ensure the satisfiability of “hard”

criteria.

Model Insight concerns how to analyse a prediction model and give a general idea of

how the model makes predictions on each class. A use case of model insight is to

check whether the prediction model is understandable by users and is consistent95

with the user’s domain knowledge.

Prediction Insight concerns how to explain the decision-making of individual pre-

dictions by relating them to their significant predictors. A use case of prediction

insight is to enable machines to explain predictions for users.

The four proofs-of-concept pave the foundation for more advanced reasoning and ver-100

ification approaches that we are planning to develop in the future. Although the latest

version of Silas supports both classification and regression, the former is a closer fit

to the logical reasoning component as they both deal with discrete math and algebra.

Therefore, the remainder of this paper is focused on classification tasks. We leave

explanation and verification for regression tasks to future work.105

Paper organisation. This paper is organised as follows. Section 2 reviews related

work. Section 3 provides preliminary knowledge of decision trees and ensemble meth-

ods. Section 4 introduces machine learning algorithms in Silas. Section 5 provides

5

experimental results on Silas’s ensemble trees. Section 6 describes Silas’s logical rea-

soning abilities to explain and verify machine learning models. Section 7 concludes110

this paper.

2. Related Work

Explainability is one of the essential differences between decision trees and connec-

tionist models (e.g., artificial neural networks), and this enables decision trees to form

core components of expert systems. For example, in the state-of-the-art Alzheimer’s115

disease diagnosis system, decision trees are used to classify meta-data such as frac-

tional anisotropy and mean diffusivity values of domain regions, while convolutional

neural networks are used to model the features of magnetic resonance imaging (De and

Chowdhury, 2020). Node partitioning functions, which dominate the explainability of

decision trees, are usually described using logical expressions. The use of different120

logical expressions can form different representations in expert systems. The above

concept has led to decision trees with polynomial partitioning functions, which has

been applied to some industrial scenarios, including concrete strength prediction and

energy efficiency analysis, and surpassed a number of traditional decision trees in terms

of prediction accuracy in regression analysis (Yang et al., 2017). Besides, the explain-125

ability of decision trees enables the description of regression processes using systems

of inequalities, which are used to free disposal hull in microeconomics (Esteve et al.,

2020).

There are many implementations of ensemble trees, such as XGBoost (Chen and

Guestrin, 2016), H2O (Cook, 2016) and Ranger (Wright and Ziegler, 2017). The latter130

two are more relevant to the bagging implementation of Silas. H2O is a Java imple-

mentation that is shown more efficient than other tools such as the R implementation,

the Python implementation and Spark; it also gives better predictions than XGBoost

on the flight dataset (Pafka, 2018). Ranger is a fast implementation of random forest

written in C++ that is designed to handle high dimensional data. There have also been135

numerous developments on improving ensemble trees in academia, such as Weighted

Oblique Decision Trees (Yang et al., 2019), Hoeffding Tree (Zhang and Ntoutsi, 2019),

6

Very Fast Decision Tree (Losing et al., 2018) and Distinct Decision Trees (Ruggieri,

2017). Silas outperforms them for most datasets surveyed in this paper.

It is non-trivial to introspect and extract logical semantics from the structure of de-140

cision trees and improve their representations. For example, to improve explainability

of decision trees, Iorio et al. (2019) have defined a path length proportional to the im-

purity decay. When partitioning a node, as both the path length and the impurity are

considered, a decision tree will tend to grow branches with shorter paths and aban-

don branches with longer paths. The above strategy can lead to shorter decision paths145

that require shorter expressions to describe the semantics of data. Moreover, on com-

plex classification tasks, as a white-box model, decision trees may be difficult to use

sufficiently complex representations to distinguish features of data. To solve this prob-

lem, Piltaver et al. (2021) have attempted to replace some leaf nodes of decision trees

with black-box models, leading to tree classifiers with both interpretable upper lay-150

ers and accurate lower layers. Further, as the rectifier linear unit (Glorot et al., 2011)

in connectionist models preserves both explainability and accuracy, it can be used by

the partitioning functions of decision trees (Tao et al., 2020). Additionally, another

way to improve decision trees is to improve training strategies, e.g., the use of boost-

ing approaches such as AdaBoost (Freund and E Schapire, 1999), XGBoost (Chen155

and Guestrin, 2016) and FDT-Boost (Barsacchi et al., 2020) and the use of artificial

training data generated from existing training data (Rodrı́guez et al., 2020). Following

this trend, we have developed our own implementation of ensemble trees (Bride et al.,

2018) by using a tree structure that is amenable to logical reasoning. We show that our

implementation is much faster and more memory efficient than both H2O and Ranger.160

The literature on ensemble trees and machine learning is rich, and we will only focus

on a subset that is related to the interpretability and verification of machine learning.

Although not yet substantial, there have been early steps taken towards under-

standing prediction models and providing guarantees for them. For instance, the Lime

tool (Ribeiro et al., 2016) is able to provide local linear approximations of various types165

of prediction models and show which features are the most decisive in predictions.

Similarly, Hara and Hayashi (Hara and Hayashi, 2018) proposed post-processing for

ensemble trees to obtain an approximation of the model with probabilistic interpreta-

7

tions. Another interesting work is Lundberg et al.’s SHAP method (Lundberg and Lee,

2017), which uses the game theory to obtain consistent explanations. Ehlers (Ehlers,170

2017) developed an SMT based method to verify linear approximations of feed-forward

neural networks. While these methods have shown potential in interpreting and verify-

ing predictions, they still treat the prediction model as a black-box and try to analyse or

verify an approximation of the black-box. On the contrary, we are interested in treating

the prediction model as a white-box and studying the internal mechanism of prediction175

models.

A logical approach seems more natural for understanding the internal structure of

decision trees because decision trees are inherently connected with logical semantics

and are very similar to binary decision diagrams (BDDs) which are widely-used in

implementations of logical systems such as theorem provers (Goré et al., 2014) and180

model checkers (Cimatti et al., 2002). Caruana et al.’s work (Caruana et al., 2015)

attempts to explain how a boosting machine makes predictions by analysing the logical

conditions in the decision trees. However, at the time of writing their Microsoft project

was very young, and the cited paper did not give enough details on interpretability.

Complementary to the above work, we are also interested in providing formal guar-185

antees for prediction models. Törnblom and Nadjm-Tehrani (Törnblom and Nadjm-

Tehrani, 2019) proposed a method to extract equivalent classes from random forest and

verify that the input/output of the model satisfies safety properties. Their approach con-

siders all possible combinations of results from all the trees, which means they have to

verify 2d·B equivalent classes of the results where d is the depth of trees and B is the190

number of trees. The advantage of their approach is that they can give bi-directional re-

sults: (completeness) if the constraint is satisfied, their verification returns positive, and

(soundness) if the verification returns positive, the constraints must be satisfied. The

disadvantage of their approach is the high complexity and the verification of 25 trees

of depth 20 in practice. Our verification approach focuses on soundness; as a result,195

we can simplify and parallelise the verification in order to verify very large models.

8

3. Preliminaries

This section provides the essential definitions of decision trees and their ensem-

bles for classification. The focus is on subtle differences between our implementation

and the common definitions in the literature. Specifically, we give a logic-oriented200

definition of decision trees that facilitates the reasoning and verification of prediction

models.

3.1. Decision Trees With a Logical Foundation

In the context of supervised learning, a structured dataset for classification is de-

fined as set of instances of the form 〈x,y〉 where x = 〈x1, ...,xn〉 is an input vector of205

n ∈ N values often called features and y is an outcome value often called label. We

denote by X the feature space and Y the outcome space.

A decision tree is a tree structure composed of internal nodes and terminal nodes

called leaves. Internal nodes are predicates over the variables {x1, ...,xn} corresponding

to features. Leaves are sets of instances. Without loss of generality, we focus on binary210

trees. Internal nodes have two successors respectively called the left and right child

nodes. By convention, let p : X → {>,⊥} be an internal node v, the right (resp. left)

child node of v is the root of a decision (sub)tree whose set of leaves L is a set of sets of

instances such that ∀ x ∈
⋃
{l | l ∈ L}, p(x) => (resp. p(x) =⊥). Given a decision

tree, any input vector is associated with a single leaf. Further, let D(Y) : Y → R≥0
215

be the set of distributions over Y . Every given leaf l is associated with a distribution

dl ∈ D(Y) such that for all y ∈ Y , dl(y) is the weight associated with the outcome y

in l. A decision tree is, therefore, a compact representation of a function of the form

X → D(Y).

Let t : X → D(Y) be a tree and x ∈ X be an input vector. Further, let M :220

D(Y)→ Y be a function such that ∀ d ∈ D(Y), M(d) = ymax such that d(ymax) =

max{d(y) | y ∈ Y}. The outcome predicted by t for the input vector x is the outcome

value M(t(x)).

In Silas, similarly to popular greedy approaches such as C4.5 (Quinlan, 1993),

trees are constructed by recursively splitting an input dataset until a stopping criterion225

9

is satisfied. The splitting predicates are chosen based on the information gain they

provide, a measure which is computed by comparing the entropy (Shannon, 1948) be-

tween the parent node and the child nodes. Contrary to generic decision trees grown by

approaches such as C4.5 (Quinlan, 1993), the predicates of internal nodes are logical

formulae described below.230

A logical formula in Silas is defined as an extension of propositional logic with

arithmetic terms and comparison operators. The semantics of the logical language

follows that of standard arithmetic and propositional logic. An arithmetic term T is

defined below where c is a constant (discrete or continuous value) and var is a variable

corresponding to (the name of) a feature:235

T := c | var | −T | sqrt(T) | T +T | T −T | T ∗T | T/T (1)

A Boolean formula F takes the following form where C denotes a set of constants

and ⊕ is the exclusive disjunction operator:

F :=> | ⊥ | var ∈C |

T < T | T ≤ T | T = T | T > T | T ≥ T |

¬F | F ∧F | F ∨F | F → F | F⊕F

(2)

In the implementation, we use var ∈ C to express formulae of nominal features,

which have discrete values, and use (in)equalities to express formulae of numeric fea-

tures, which have continuous values.240

3.2. Ensemble of Decision Trees

We adopt Cui et al.’s definitions (Cui et al., 2015). Let an ensemble be a set of

decision trees of size T . It gives the weighted sum of the trees as follows:

E(x) =
T

∑
i=1

wi · ti(x) (3)

where E is the function for the ensemble, wi and ti are respectively the weight and

function for each tree. We give some examples of ensemble trees below.

10

Bagging. Each decision tree is trained using a subset of the dataset that is sampled

uniformly with replacement. The remaining instances form the out-of-bag (OOB) set.245

When selecting the best formula at each decision node in a tree, only a subset of the

features are considered. This is commonly found in algorithms such as Random For-

est (Breiman, 2001). Bagging grows large trees with low bias, and the ensemble re-

duces variance.

Boosting. Boosting trains weak learners, i.e., small trees, iteratively as follows:

Ei+1(x) = Ei(x)+αi · ti(x) (4)

where ti is the weak leaner trained at iteration i and αi is its weight. The final en-250

semble is thus a special case of E(x) above where wi is αi. The ensemble reduces

bias. AdaBoost (Freund and E Schapire, 1999) is a well-known example of a boosting

approach.

3.3. Silas

The remainder of the paper is focused on bagging, although we also implement255

boosting approaches for comparison. Contrary to the vanilla Random Forest algo-

rithm (Breiman, 2001), we may not grow each tree to maximum depth, which is why

we store the instances’ distribution at the leaf nodes rather than a single outcome value.

Each tree is weighted by its performance on the OOB sample. To obtain a prediction,

the majority of Silas methods aggregate weighted votes for each class (soft-voting) on260

the leaves instead of weighted voted outcomes (hard-voting). We will discuss a case

that uses hard-voting independently. Another unique tweak in Silas is that decision

trees are formulated in a logical language which belongs to a subset of first-order logic.

This helps with our overarching objectives of explainability and verifiability. As a re-

sult, we also treat nominal features differently than other implementations: we directly265

use set membership to encode nodes for nominal features.

Some industrial users of Silas have specific requirements on computational per-

formance and hardware. For example, some require that the software must be able

to perform learning and prediction locally on their existing consumer-grade hardware

11

than on clusters hosted outside. As a result, Silas is built with a focus to be fast and270

memory efficient. The experiment in this paper demonstrates that the users of Silas can

perform machine learning for large datasets on consumer-grade machines.

3.4. Baseline

There are a large number of variants of Random Forest and AdaBoost in the lit-

erature. Recent examples include the Weighted Oblique Decision Trees (Yang et al.,275

2019), XBART (He et al., 2019), Adaptive Neural Trees (Tanno et al., 2019), Aug-

Boost (Tannor and Rokach, 2019), etc. However, obtaining the source code for all

these implementations and setting up a platform that can run them in a correct config-

uration is non-trivial. Further, many recent papers set up their experiment on clusters

with many cores, hundreds of GBs of memory and expensive GPUs, which are against280

the aforementioned resource requirement of Silas.

We will compare various combinations of algorithms in the Silas framework with

two well-known implementations in the industry: H2O (Cook, 2016) and Ranger (Wright

and Ziegler, 2017).

4. Machine Learning in Silas285

This section describes the machine learning algorithms used in Silas. We also

discuss how high-performance computing is incorporated to yield faster and more

resource-efficient computation for machine learning.

4.1. Customised Algorithms in Silas

We describe a number of customised sampling and weighting algorithms used in290

Silas for building ensemble trees. We divide the algorithms into tree-level algorithms,

which work within the process of building a single tree, and forest-level algorithms,

which are in the tree ensemble, or forest building stage. The user can choose any com-

bination of a tree-level algorithm and a forest-level algorithm in the Silas framework.

12

4.1.1. Tree-level Algorithms295

Greedy Narrow Tree (GT). Similarly to Random Forest (Breiman, 2001), this class

of trees is grown in a greedy fashion and consider only a subset of features at each

split. For classification tasks, the default settings randomly select
√

D features, where

D is the dimension, i.e., the number of columns, of the original dataset. For regression

tasks, this parameter is D/3 by default. When expanding a leaf node, it selects, for

each subsampled feature, the best cut-point using information gain, then choose to split

using the feature whose best cut-point has the best overall information gain. However,

contrary to vanilla Random Forest, the information gain of cut-points are, for efficiency

reasons, evaluated on a sample of the data-points of the leaf. It is indeed often possible

to gain significant knowledge about an overall population cost-effectively by studying

a sample. The size of the sample is determined as a function of the prevalence of the

minor class. More specifically, given a desired level of precision (i.e., the margin of

error) e, the desired confidence level in Z-value, and the proportion of the minority p,

the size n of the sample is computed using Cochran’s formula (Cochran, 1977):

n =
Z2 p(1− p)

e2 . (5)

Empirically, Cochranâ’s formula is especially appropriate in situations with large

populations. Note that the outcome distribution change at each new node. It follows

that the sample size needs to be updated for each split. This method confers to the

overall learning approach a highly adaptative sampling mechanism.

Random Tree (RT). Similarly to Greedy Narrow Tree, this class of trees is grown in300

a greedy fashion and consider only a subset of features at each split. However, when

expanding a leaf node, it selects, for each subsampled feature, a single random split

within its domain.

4.1.2. Forest-level Algorithms

Since forest-level algorithms are the focus of this paper, we further divide these305

algorithms into the ones based on sampling data points, the ones based on weighting

data points, and the ones based on voting the results. These algorithms do not necessar-

ily exclude each other; one can actually create a hybrid of these algorithms. However,

13

there would be too many combinations to reasonably survey in this paper, so we choose

the following subset based on our experience from real-life datasets.310

Sampling-based Algorithms

Uniform Balancing (UB). UB can uniformly undersample the majority class(es) in-

stances to match the size of the minority class. In Silas, class balancing is performed

on top of dataset subsampling, which is indicated by a parameter called “sampling pro-

portion”. For example, when sampling proportion is 0.8, UB yields 80% of randomly315

selected minority instances and the same amount of randomly selected instances for all

other classes.

No Balancing (NB). No balancing between classes. If the sampling proportion is 1.0,

NB will use all the instances in the dataset. If the sampling proportion is 0.632, then

NB will use roughly the same amount of randomly sampled instances as bagging but320

the sampling is without replacement.

Prototype Sampling (PS). We are interested in investigating how prototype selection

based algorithms, particularly the hybrid ones such as the IB3 (Aha et al., 1991), ben-

efit ensemble trees learning. Unfortunately, those algorithms often rely on comput-

ing the nearest neighbour of a data point or the centroid of a set of data points, and325

these operations are too costly for our use case. For example, the Condensed Near-

est Neighbour (CNN) algorithm (Hart, 1968) involves so many computations of the

nearest neighbour that it takes much longer time to finish than the entire training time

of Silas. Even the Fast Condensed Nearest Neighbour (FCNN) algorithm (Angiulli,

2007), which requires O(|T | · |S|) distance computations where T is the training set,330

and S is the prototype set, is too slow for our use cases. Thus, to obtain a sampling

method that does not hinder the speed of Silas, we have to sacrifice those operations

that often lead to a smaller size of the sample or better classification performance.

Instead of computing the nearest neighbour of a data point from a prototype set, we

have to resolve to find an approximation of the nearest neighbour. We thus propose a335

variant of the CNN algorithm that samples k instances from the prototype set and find

14

the nearest neighbour within this subset. The algorithm is named “k-random-CNN”

(krCNN) and is presented in Algorithm 1.

Algorithm 1: The krCNN Algorithm.
Data: a training set T .

Result: a set S of prototypes.

for each x in T do

if S contains less than 2 items or class(x) is minority then

add x to S;

else

Sk← randomly select with replacement k instances from S;

y← nearest neighbour of x in Sk;

if class(x) 6= class(y) then

add x to S;

end

end

end

Training Time (s) UB NB 5rCNN 3rCNN 1rCNN

flight (RT) 12 24 34 29 18

flight (GT) 17 34 40 34 23

creditcard (RT) 6 90 126 111 64

creditcard (GT) 5 12 126 108 63

Table 1: Computational performance of krCNN on the flight and creditcard dataset.

We evaluate the value of k and observe its computational cost and the sampling

result on selected datasets. In particular, we consider two datasets: the 1 million flights340

dataset (Pafka, 2019) and the creditcard dataset (OpenML, 2019). The ratios of the

majority against the minority in these two datasets are respectively 4:1 and 577:1. Ta-

ble 1 shows the time spent on training 100 decision trees of leaf size 64 instances. We

separate the cases where the tree building method is RT and GT . UB is the fastest be-

15

cause it undersamples the majority class to be the same size as the minority class, thus345

the resultant training set is usually very small. Even when k is as small as 10, despite

yielding a much smaller sample set than the original training set, the overall training

time is significantly longer than NB, which uses all data for training. The training time

decreases as k is reduced to 3, in which case the training time is comparable to NB.

Because of the extreme imbalance in the creditcard dataset, the krCNN variants have a350

more visible performance hit than for the flight dataset.

The above empirical study shows that the computation time of krCNN is only satis-

factory when k < 3. Inspired by various methods in the literature that exploits triangular

relations between data points, such as Tomek Link undersampling (Tomek, 1976), we

propose the prototype sampling (PS) algorithm in Algorithm 2, which is a modification355

of 2rCNN.

Algorithm 2: The Prototype Sampling Algorithm.
Data: a training set T .

Result: a set S of prototypes.

for each x in T do

if S contains less than 2 items or class(x) is minority then

add x to S;

else

let y1 and y2 be two random instances from S;

// Function d() computes the Euclidean distance between two points.

if (d(x,y1) > d(y1,y2) and d(x,y2) > d(y1,y2)) or

(d(x,y1) < d(y1,y2) and class(x) 6= class(y1)) or

(d(x,y2) < d(y1,y2) and class(x) 6= class(y2)) then

add x to S;

end

end

end

The PS method yields 476,594 (59%) and 72,011 (28.1%) majority instances for

16

the flight and creditcard dataset respectively. The sampled size is much bigger than

the krCNN method. Computationally it is the same as 2rCNN barring a few more

conditions in the if statement. The logic behind these conditions are as follows: If360

d(x,y1) > d(y1,y2) and d(x,y2) > d(y1,y2), then x is “far away” from y1 and y2, and

it may have new information compared to instances in S. If d(x,y1) < d(y1,y2) and

class(x) 6= class(y1), then x is “closer” to y1 than y2 is, and x is of a different class than

y1, which means it may provide new information compared to instances in S. The last

case is symmetric.365

Since the value of k in the above case is very small, PS not only selects instances

near decision boundaries but also selects instances far from boundaries. Thus, the

behaviour of PS is more similar to a hybrid method than a condensation or edition

method.

Weighting-based Algorithms370

Weighted Cascade (WC). BalanceCascade (Liu et al., 2009) is an iterative approach

that undersamples previously correctly classified instances to form the training set for

the next iteration. It leads to very good predictive performance compared to other sam-

pling algorithms (More, 2016). However, a naı̈ve implementation of BalanceCascade

showed poor performance in the Silas framework, because decision trees often over-375

fit and predict a large portion of instances correctly, and the resulting training set for

later iterations becomes too small too quickly. Consequently, we propose to modify the

weight of incorrectly classified instances rather than removing correctly classified ones.

In the Silas framework, adding the weight of an instance by 1 is equivalent to adding

a virtual copy of the instance. This way of “increasing” the size of the dataset does380

not increase the training time of Silas. Our new algorithm, called Weighted Cascade,

is presented in Algorithm 3.

In the discussion and experiment below, we shall use the following weight modifi-

cation:

wi← wi +3, (6)

The value 3 is determined based on empirical results from many public datasets and

17

Algorithm 3: The Weighted Cascade Algorithm.
Data: a training set T .

Result: a set E of decision trees.

while current number of trees < |E| do

let t be the number of allowed parallel threads;

train t decision trees that form a batch B;

predict the training set using B;

for each misclassified instance i do
change the weight of i with wi← wi +C; // C stands for a constant.

end

add B to the ensemble E;

end

private projects undertaken by Depintel. The reader can use other methods, such as a

weight increase that depends on the predictive performance of B.385

AdaBoost (AB). Iteratively modifying the weight of instances is very close to boost-

ing. For example, the AdaBoost (Schapire, 2013) algorithm initialises the weight of

instances to 1/n where n is the total number of instances. In each iteration, it trains a

weak learner h and obtains weighted classification error ε by

ε =
n

∑
i=1,h(xi)6=yi

wi. (7)

The weight for the new tree is

α =
1
2

ln
1− ε

ε
, (8)

and the weight for each data instance is updated by

wi = wi · e−yiαh(xi). (9)

We implement a parallelised variant of AdaBoost. Similar to the proposed Weighted

Cascade, our tweak trains t trees at the same time where t is the number of allowed

threads. As a result, the weighted classification error is estimated from a batch of tree in

18

each iteration, and the weight α is applied to every tree in the batch. Since we consider

multiclass problems, we chose to implement the SAMME variant of AdaBoost (Hastie390

et al., 2009).

Tree Prediction Aggregation Methods

Given the individual predictions of the trees in an ensemble, there are many ways

to aggregate them. The two main methods are hard-voting and soft-voting.

Hard-voting (HV). Hard-voting is a simple form of voting described as below:

ŷ = mode{hi(xxx), · · · ,h|E|(xxx)}, (10)

where hi is the ith classifier and E is the ensemble. That is, each classifier votes a class,395

and the class that obtains the largest number of votes is the final result.

Soft-voting. By default, Silas uses soft-voting as it tends to give better results than

hard-voting. Soft-voting is often described as

ŷ = argmax
c

|E|

∑
i=1

αi pc
i , (11)

where E is the ensemble, αi is the weight of the ith tree, and pc
i is the probability that the

ith classifier predicts class c. The voted result is the class that maximises the weighted

sum of probabilities. For instance, if tree-weights are all 1, a tree votes (0.8,0.2) and

another tree votes (0.4,0.6), the end result will be (1.2,0.8), i.e., vote for class 0.400

However, we find that normalising the result at each leaf node and obtaining proba-

bilities often lead to worse predictions than directly using the distribution of the classes

at each leaf node. So the “soft-voting” in Silas keeps the count for each class at the leaf

nodes and aggregates the counts instead, that is,

ŷ = argmax
c

|E|

∑
i=1

αiDc
i (12)

where Dc
i is the count of instances of class c at the leaf node of the ith classifier. For

instance, if tree-weights are all 1, a tree votes (8,2) and another tree votes (40,60),

the end result will be (48,62), i.e., vote for class 1, instead of voting for class 0 using

Equation 11. This kind of aggregation often performs better, especially when we want

19

to terminate the growing of the tree early. Moreover, our earlier experiment revealed405

that the AUC would likely be better if the leaf nodes’ weights are not normalised before

aggregation. Intuitively, this is due to the fact that leave nodes’ size may vary, hence a

bigger leave node carries more information and votes with greater certainty.

On the other hand, for datasets that contain a large number of classes, we find that

soft-voting consumes too much memory and is not feasible. For example, if we store410

the count in a 64-bit integer, then soft-voting requires to store a K-dimensional vector

of 64-bit integers, where K is the number of classes, at every leaf node of every tree.

In the case that the depth of each tree is 20 and there are 1000 classes and 100 trees,

it would require 220×1000×8(Byte)×100≈ 780GB of RAM to store the leaf nodes.

In comparison, hard-voting only needs to store the index of the voted class per leaf,415

which requires 1000 times less memory for storing leaf nodes in the soft-voting case.

When we grow each tree until the leaf only contains 1 instance, which is the standard

in C4.5, hard-voting and soft-voting should achieve similar results. In the experiment

in this paper, all combinations of sub-algorithms use soft-voting except for HV .

4.1.3. Remarks420

All the forest-level algorithms can be applied on top of bootstrapping or other sam-

pling methods. For comparison purposes in this paper, we assume that no other data

sampling methods are used at forest-level. Under these settings, the combination of UB

and GT can be deemed as a variant of the Random Forest (Breiman, 2001) algorithm

with more aggressive sampling, whereas the combination of NB and RT is similar to425

Extremely Randomised Trees (ExtraTrees) (Geurts et al., 2006).

4.2. High-Performance Computing for ML

In this section, we list some of the major implementation and design choices which

contribute to the excellent time and memory efficiency of Silas. There are various

incentives to develop high-performance machine learning tools that target commodity430

hardware. The benefits include a smaller ecological footprint as well as cost savings

and increase in productivity. Reducing the hardware requirements of machine learning

20

applications also fosters security as the data no longer need to be transmitted through

off-site cloud infrastructures and can instead be locally hosted.

We reviewed existing implementations of ensemble tree machine learning for clas-435

sification and noticed a large difference in performance. It is often assumed that the

community and big companies refine open-source implementation over time in such a

way that their quality and efficiency is high. Newcomers have often been dissuaded to

pursuit their own implementation if not for educational purposes. However, the per-

formance of a piece of software is heavily influenced by the technologies used and the440

programming paradigm employed.

To our knowledge, at the time of our survey, one of the best if not the best commer-

cial implementation of tree-based machine learning is H2O (Cook, 2016)£¬ which is an

open-source java implementation supported by a company of the same name. Another

competing implementation is Ranger (Wright and Ziegler, 2017) – a C++ open-source445

implementation branded as fast and suited for high dimensional data. Both follow an

object-oriented programming paradigm. When developing Silas, we settled with the

following three key points at the core of Silas code base.

Programming language. The programming language itself must be efficient and

low-level enough to give us the liberty to perform cache and instruction-level optimisa-450

tions. Similarly to Ranger, we chose C++ because it is fast (Heer, 2019) and provides

enough high-level programming features, such as template metaprogramming (Abra-

hams and Gurtovoy, 2004), which are useful when realising the other vital points.

Pure functions in C++. we have developed a novel C++ functional & parallel

programming framework that enables us to compose pure functions in a straight for-455

ward manner statically. This framework is largely inspired by the functional program-

ming paradigm. More specifically, we predominantly employ pure functions due to the

following beneficial properties (Carmack, 2012): reusability, testability, thread-safety

and the absence of side effects. In this framework, we notably employed a static dis-

patch technique called Curiously Recurring Template Pattern (CRTP) (Abrahams and460

Gurtovoy, 2004) to offer efficient means of sequential and parallel compositions. In a

multi-core execution environment, this organisational framework incurs a low run-time

overhead.

21

Data-oriented paradigm. In contrast with Ranger and H2O, our codebase follows

a data-oriented programming paradigm. The emphasis is placed on the data being465

created, manipulated and stored. The main advantage of data-oriented programs is the

constraint on the locality of reference, which enables safe and effective parallelism (e.g.

vectorisation of code). Another benefit of data-oriented programming is the efficient

use of memory caching, an essential aspect of modern hardware.

Management of big data. We have developed a new data storage and management470

library to deal with datasets that have a large number of rows and columns more effi-

ciently. This library includes features such as stable vector, a memory optimisation that

stores multi-dimensional data into a flat array with stable referencing during training;

data storage by columns, which significantly reduces cache-miss when selecting nodes

for decision trees; and high information density, which reduces cache and memory475

usage based on the type and values of each feature.

These three overarching design choices, together with rigorous profiling, were key

to the high-performance of Silas, as demonstrated by the empiric results of the follow-

ing section. To foster the development of high-performance machine learning, and as

part of our technical contribution to the community, we open-sourced the C++ func-480

tional & parallel programming framework as well as the data-structures we developed.
2

5. Experimental Results

This section compares the computational performance and predictive performance

of the methods mentioned above on numerous datasets. Section 5.1 uses experiment485

on medium and large datasets to compare different methods of Silas. Section 5.2 uses

experiment on larger datasets to highlight Silas’ abilities of high-performance comput-

ing. The experiment was conducted on a desktop equipped with an Intel Core i7-7700

quad-core CPU and 32GB RAM running on Ubuntu 19.04. Silas source code is writ-

2Our C++ functional & parallel programming framework is available via https://depintel.com/

downloads/public/code-release-01.zip.

22

https://depintel.com/downloads/public/code-release-01.zip
https://depintel.com/downloads/public/code-release-01.zip

ten in C++. Extra libraries such as Intel Thread Building Blocks (TBB) are used for490

efficient parallel computation. GPU features have been disabled.

5.1. Results on Medium and Large Datasets

Dataset Size # Classes # Num. Feat. # Nom. Feat. Class Ratio

Binary Classification

diabetes 768 2 8 0 1.87:1

jm1 10,885 2 21 0 4.17:1

mozilla4 15,545 2 5 0 2.04:1

adult 48,842 2 2 12 3.18:1

kick 72,983 2 14 18 7.13:1

creditcard 284,807 2 30 0 577.88:1

flight 1,000,000 2 2 6 4.13:1

Multi-class Classification

connect-4 67,557 3 0 42 6.90:2.58:1

fashion-mnist 70,000 10 784 0 1.00:. . .:1

mnist-784 70,000 10 784 0 1.24:. . .:1

walking-activity 149,332 22 4 0 24.14:. . .:1

cover-type 581,012 7 54 0 103.13:. . .:1

led5000 1,000,000 10 0 24 1.01:. . .:1

Table 2: Selected datasets.

We use the datasets in Table 2 as a benchmark for the remainder of this paper.

Except for the flight dataset (Pafka, 2019), all the other datasets can be found on

OpenML (Vanschoren et al., 2013). These datasets are selected on the following basis:495

they are from real-life problems; they have a large number of instances (except dia-

betes); they are a mixture of binary classification and multi-class classification prob-

lems; the ratios between classes range from balanced to imbalanced; they involve nu-

merical features (Num. Feat.) and nominal features (Nom. Feat.). Note that when there

are too many classes, we only show the ratio of the largest class and the smallest class.500

For example, the ratio between the largest class and the smallest class in cover-type is

103.13:1.

The experiment is run 10 times, and we present the average accuracy, AUC, and

training time that includes time for loading data. The 95% confidence interval is usu-

23

ally below 0.001 for accuracy and AUC, so we do not show them in the tables. In505

each run, all datasets except flight are tested using 10-fold cross-validation, and the

results are the average of the validations. The flight dataset is tested using a sepa-

rated dataset. Different tools have different default hyper-parameters for tree depth and

leaf size (number of instances at each leaf node). To ensure that the experiment and

comparison are fair, we use the following fixed hyper-parameters: 100 trees, 64 max510

tree depth, 64 min leaf size, and default settings otherwise, across all tested tools. We

present extracts of the full table below and discuss what they demonstrate. We give the

full table in Appendix A. The reader can refer to Appendix B for experiment results

using default settings of H2O and Ranger. We highlight the “best results”, which are

defined as the highest values when rounding to the third decimal place, across all the515

tools and methods with bold font.

Overall results. Figure 1 shows the overall results of different Silas methods in com-

parison with H2O and Ranger. Figure 1 (a) reveals that Silas (NB+RT) and Silas

(WC +RT) give the highest AUC for binary problems, they are slightly higher than

Ranger and noticeably higher than H2O. H2O and Ranger do not report multi-class520

AUC. Figure 1 (b) shows that Silas (HV + RT (1), i.e., with leaf size 1) and Silas

(WC +RT) give comparable accuracies than Ranger and better than H2O for binary

problems. On the other hand, these two Silas methods yield significantly better accu-

racies than H2O and Ranger for multi-class problems. Figure 1 (c) shows that most

Silas methods are significantly faster than both H2O and Ranger for both binary and525

multi-class datasets. An exception is Silas (PS+RT), which is slow for multi-class

problems. H2O is generally very slow for multi-class problems (1587s, off the chart).

An outlier is Silas (HV +RT (1)), which is not that slow for most datasets but spend

38,143s on the led5000 dataset. See Table 7 for details. Overall, Silas (WC +RT)

gives better AUC and accuracy than H2O and Ranger on both binary and multi-class530

problems and is much faster than H2O and Ranger. Other Silas methods have various

trade-offs, which we will elaborate below.

Comparing Silas with H2O and Ranger. We give the results for H2O and Ranger as

a baseline in Table 3 and results for Silas in Tables 4, 5, 6 and 7. As both H2O and

24

(a) Average AUC on binary and multi-class datasets.

(b) Average prediction accuracy on binary and multi-class datasets.

(c) Average training time (in seconds) on binary and multi-class datasets.

Figure 1: A comparison of AUC, accuracy and and training time of considered tools/methods.

25

H2O Ranger

Dataset AUC Acc. Time (s) AUC Acc. Time (s)

Binary Classification

diabetes 0.8155 0.7550 4 0.8390 0.7637 < 1

jm1 0.7319 0.6997 15 0.7550 0.8169 2

mozilla4 0.9655 0.9346 14 0.9790 0.9459 2

adult 0.9147 0.8492 31 0.9185 0.8656 11

kick 0.7609 0.8669 95 0.7658 0.9011 39

creditcard 0.9760 0.9993 161 0.9602 0.9994 557

flight 0.7442 0.7996 53 0.7225 0.7838 139

Average (binary) 0.8441 0.8434 53 0.8486 0.8681 107

Multi-class Classification

connect-4 - 0.7269 174 - 0.7700 19

fashion-mnist - 0.8567 3,266 - 0.8754 176

mnist-784 - 0.9392 3,026 - 0.9580 143

walking-activity - 0.6174 948 - 0.6488 116

cover-type - 0.8763 4,444 - 0.8315 343

led5000 - 0.6236 8,395 - 0.6252 603

Average (binary + multi-class) - 0.8111 1,587 - 0.8296 165

Table 3: Results from H2O and Ranger.

Ranger do not report multi-class AUCs, we leave multi-class AUCs in Table 3 blank.535

The results reveal that most Silas methods are much faster than H2O and Ranger. For

instance, with similar predictive ability, Silas’ NB+RT (i.e., 80 seconds in Table 4)

is 19x faster than H2O (i.e., 1,587 seconds in Table 3) and 2x faster than Ranger (i.e.,

165 seconds in Table 3) in terms of average training time on all datasets. On predictive

performance, Ranger gives the best AUC for four binary-class datasets, but it gives540

poor AUC results on the other three binary-class datasets. On average, Silas’ NB+RT

has a slightly better AUC (i.e., 0.8489 in Table 4) than Ranger (i.e., 0.8486 in Table 3))

on binary-class datasets. Considering both all datasets, both AB+RT (i.e., 0.8331 in

Table 6) and WC+RT (i.e., 0.8498 in Table 6) have better average accuracies than both

H2O (i.e., 0.8111 in Table 3) and Ranger (i.e., 0.8296 in Table 3).545

Next we give some comparisons of algorithms within the Silas framework.

26

Silas (NB+RT) Silas (NB+GT)

Dataset AUC Acc. Time (s) AUC Acc. Time (s)

Binary Classification

diabetes 0.8297 0.7520 < 1 0.8087 0.7488 < 1

jm1 0.7490 0.8149 1 0.7527 0.8146 3

mozilla4 0.9724 0.9363 1 0.9679 0.9286 3

adult 0.9079 0.8552 6 0.9174 0.8646 10

kick 0.7680 0.8998 13 0.7682 0.9008 24

creditcard 0.9777 0.9992 91 0.9635 0.9989 12

flight 0.7377 0.7942 24 0.7615 0.8037 34

Average (binary) 0.8489 0.8645 20 0.8486 0.8657 12

Multi-class Classification

connect-4 0.8927 0.7697 12 0.8917 0.7843 13

fashion-mnist 0.9881 0.8582 85 0.9351 0.4972 14

mnist-784 0.9975 0.9465 72 0.9762 0.7562 27

walking-activity 0.9676 0.6363 57 0.8446 0.1853 7

cover-type 0.9901 0.8841 273 0.8925 0.4883 26

led5000 0.9320 0.6276 396 0.9044 0.5688 192

Average (binary + multi-class) 0.9008 0.8288 80 0.8757 0.7185 28

Table 4: A comparison between NB+RT and NB+GT .

RT and GT . Table 4 shows the results on NB+RT and NB+GT . Although the run-

time differs case by case, overall, it is consistent that GT is faster than RT . RT does

not involve the computation to find the best cut-point, but it often leads to deeper trees,

whereas GT is able to yield shorter trees. GT has obtained three good accuracies for550

binary classification problems, i.e., 0.9008 on kick, 0.9989 on creditcard and 0.8037 on

flight, but GT performs poorly for multi-class problems. GT is not suited for datasets

such as covertype and walking-activity because they have a large number of imbalanced

classes. For example, the class ratio of covertype is 103.13 : . . . : 1, which means that

the largest class has approximately 100 times more instances than the smallest class.555

In such cases, the number of instances for minor classes tends to be very small. As GT

grows leaf nodes by finding the best cut-points where the size of samples is determined

by the prevalence of minor classes, the number of instances in each leaf node tends to be

27

very small, resulting in poor accuracies for multi-class problems. On the other hand,

RT performs well for multi-class problems because its number of instances in each560

leaf node is not restricted by the prevalence of minor classes, which means that each

leaf node can gain more instances to acquire more reasonable features to distinguish

different classes. For such reasons, RT can more generally deal with imbalanced data,

while GT is suitable for datasets with a sufficient number of instances in minor classes.

Silas (UB+RT) Silas (PS+RT)

Dataset AUC Acc. Time (s) AUC Acc. Time (s)

Binary Classification

diabetes 0.8298 0.7498 < 1 0.8297 0.7584 < 1

jm1 0.7344 0.6801 1 0.7456 0.8110 2

mozilla4 0.9694 0.9297 1 0.9710 0.9329 2

adult 0.9054 0.7937 4 0.9072 0.8490 11

kick 0.7633 0.7341 4 0.7675 0.8976 26

creditcard 0.9799 0.9878 5 0.9814 0.9993 127

flight 0.7307 0.6411 12 0.7365 0.7983 28

Average (binary) 0.8447 0.7880 4 0.8484 0.8638 28

Multi-class Classification

connect-4 0.8560 0.6850 5 0.8861 0.7847 28

fashion-mnist 0.9881 0.8579 84 0.9881 0.8579 545

mnist-784 0.9974 0.9459 66 0.9975 0.9466 522

walking-activity 0.9419 0.5131 21 0.9674 0.6360 76

cover-type 0.9397 0.6387 48 0.9890 0.8798 491

led5000 0.9319 0.6275 398 0.9312 0.6261 623

Average (binary + multi-class) 0.8898 0.7526 50 0.8999 0.8290 191

Table 5: A comparison between UB+RT and PS+RT .

UB and PS. Table 5 shows results for UB and PS. UB is very fast due to its aggressive565

sampling. It can obtain good AUC, but it often yields bad accuracy. Consequently,

the combination of UB+GT gives the worst accuracy of all tested methods, although

it gives very good AUC on some binary classification problems (e.g., flight dataset).

When undersampling the majority class(es), PS (with RT) yields both high AUC and

high accuracy. This indicates that the proposed sampling improves accuracy compared570

28

to uniform balancing. However, even the few distance computations make the compu-

tation much slower.

Silas (AB+RT) Silas (WC+RT)

Dataset AUC Acc. Time (s) AUC Acc. Time (s)

Binary Classification

diabetes 0.8129 0.7486 < 1 0.8162 0.7551 < 1

jm1 0.7433 0.7964 2 0.7498 0.8184 3

mozilla4 0.9776 0.9338 2 0.9789 0.9486 2

adult 0.8922 0.8259 9 0.9109 0.8571 11

kick 0.7625 0.8837 18 0.7654 0.9009 21

creditcard 0.9747 0.9992 121 0.9771 0.9994 111

flight 0.7419 0.7833 37 0.7458 0.8013 41

Average (binary) 0.8436 0.8530 27 0.8492 0.8687 27

Multi-class Classification

connect-4 0.8994 0.8365 18 0.8988 0.8489 20

fashion-mnist 0.9879 0.8687 128 0.9880 0.8842 133

mnist-784 0.9983 0.9624 107 0.9986 0.9659 113

walking-activity 0.9667 0.6348 63 0.9643 0.6663 71

cover-type 0.9926 0.9253 355 0.9961 0.9544 398

led5000 0.9329 0.6311 531 0.9241 0.6474 582

Average (binary + multi-class) 0.8987 0.8331 107 0.9011 0.8498 116

Table 6: A comparison between AB+RT and WC+RT .

WC and AB. Table 6 compares WC and AB. Changing the weight of data instances is

shown to improve the accuracy of both binary and multi-class problems. AB+RT has

the second-best accuracy in the tested Silas methods. Although WC+RT gives sub-par575

AUC for diabetes, jm1 and flight, it still has the best average AUC and accuracy for

binary problems. It also gives the best accuracy for every tested multi-class dataset.

However, both WC and AB do not yield good AUC when combined with GT .

Space to improve. We note that all the tested methods, including H2O and Ranger,

may give better results under other parameters. For example, we find that the parameter580

“min leaf size” largely affects the predictive performance, and every method performs

29

well on a different value for each dataset. There are also a wide range of other pa-

rameters for each implementation that may affect the prediction results. For example,

boosting is often used to grow shallow trees in the literature, but our implementation of

AdaBoost performs better when tree depth is large. It is, therefore, infeasible and out585

of the scope of this paper to find the best parameters for each method on each dataset.

We chose leaf size 64 because it generally yields high AUC for tested methods.

HV with different leaf sizes. The sub-algorithm HV often performs well with “min

leaf size” set to 1. Thus, we show its results separately in Table 7. Note that the “best

results” in Table 7 are better, but do not follow the same rule as previous tables because590

the parameters are different. The combination of HV +RT with leaf size 1, although

gives sub-par AUC on some binary classification problems, often gives even better

accuracy than WC+RT . Again, WC+RT may yield better results on the parameters

we have not tested.

Comparison with recent research results. It is challenging to compare with other meth-595

ods without directly running them on the same hardware, but we can still have some

slightly indirect comparisons of predictive performance with some recent research pa-

pers that propose new machine learning algorithms (rather than the ones that aim to

solve a specific classification problem, in which case the authors would have done ex-

tensive parameter tuning to optimise the results, which we have not).600

The Weighted Oblique Decision Trees (AAAI 2019) (Yang et al., 2019) obtained

0.7161 accuracy on diabetes, 0.9434 on mnist, and 0.7415 on connect-4 in 5-fold cross-

validations, which are well below our results. The vanilla Hoeffding Tree obtained

an accuracy of 0.8391 on the adult dataset (IJCAI 2019) (Zhang and Ntoutsi, 2019),

and the Fairness-aware Hoeffding Tree, which is focused on fairness than accuracy,605

obtained an accuracy of 0.8183. The Very Fast Decision Tree (ICDM 2019) (Losing

et al., 2018) obtained an accuracy of 0.6973 for the cover-type dataset. The optimal

method of Distinct Decision Trees (ICML 2017) (Ruggieri, 2017) obtained 0.8569

accuracy on the adult dataset in a 10-fold cross validation. Even without extensive

hyperparameter tuning, Silas (WC+RT , cf. Table 6) outperformed all the above, and610

30

Silas (HV +RT) - Leaf Size 64 Silas (HV +RT) - Leaf Size 1

Dataset AUC Acc. Time (s) AUC Acc. Time (s)

Binary Classification

diabetes 0.8196 0.7505 < 1 0.8185 0.7657 < 1

jm1 0.7151 0.8153 2 0.7588 0.8205 5

mozilla4 0.9652 0.9400 1 0.9819 0.9556 2

adult 0.8806 0.8551 8 0.8957 0.8503 24

kick 0.6872 0.9000 15 0.7559 0.9014 37

creditcard 0.9303 0.9994 93 0.9536 0.9995 92

flight 0.7106 0.7937 29 0.7588 0.8013 67

Average (binary) 0.8155 0.8649 21 0.8462 0.8706 32

Multi-class Classification

connect-4 0.8638 0.7760 17 0.9130 0.8326 100

fashion-mnist 0.9866 0.8620 86 0.9908 0.8828 121

mnist-784 0.9975 0.9513 73 0.9991 0.9723 104

walking-activity 0.9484 0.6354 53 0.9687 0.6697 530

cover-type 0.9850 0.8825 330 0.9979 0.9556 506

led5000 0.9213 0.6251 534 0.9253 0.6904 38,143

Average (binary + multi-class) 0.8778 0.8297 95 0.9014 0.8537 3,056

Table 7: Experimental results for medium to large datasets on Silas with HV +RT .

Silas (HV +RT , cf. Table 7) with leaf size 1 outperformed all the above except the

0.8569 accuracy on adult.

5.2. Results on Larger Datasets

In this section we focus on large datasets as they highlight the importance of code

optimisation.615

Large number of instances. The 10 million flights dataset (Pafka, 2019) is a good bi-

nary classification problem with a mixture of numerical features and nominal features.

The characteristic of the 10 million flights dataset is the same as the 1 million version

in Table 2, except that it has 10 million instances. We compare UB+GT , NB+GT ,

WC +GT , which are good performers for binary classification problems, with H2O620

and Ranger on this dataset with the default settings of 100 trees, 64 tree depth and 64

31

Dataset - Flight 10M AUC Acc. Time (s) Mem. (GB)

Silas (UB+GT) 0.7924 0.6976 184 4.3

Silas (NB+GT) 0.8033 0.8134 453 10

Silas (WC+GT) 0.8045 0.8082 699 9.7

H2O 0.7737 0.7250 1,198 12.6

Ranger 0.7403 0.7838 2,047 29.4

Table 8: Experiment results for the 10 million flight dataset. Time includes loading data, training, and

computing the predictive performance. “Mem.” shows the peak memory usage during the computation.

min leaf size. The results are shown in Table 8. The UB+GT method has a very small

computational footprint, and it gives competitive AUC. The best predictive results are

from NB+GT and WC+GT . H2O and Ranger do not give as good results, and they

take a rather long time.625

The 10-million flights dataset was also used in the LightGBM paper (NIPS 2017) (Ke

et al., 2017), but their best AUC was below 0.79. The best AUC from the benchmarked

tools in (Pafka, 2019) is 0.812 from H2O with 5000 trees in 9.5 hours on a 32-core

CPU and 250GB RAM machine. In comparison, we are able to obtain 0.8147 AUC

with UB+GT , feature proportion 1.0 (use all features when finding the best split), and630

500 trees in 28.5 minutes using a 4-core CPU and less than 10GB RAM.

Large number of features and classes. The ASR-200 dataset includes 79,157 instances

and 1,332 classes of phoneme recognition, which is a subprocess of automatic speech

recognition (ASR). The instances are generated using the Kaldi ASR toolkit (Povey

et al., 2011) and 200 sentences in the Librispeech ASR corpus (Panayotov et al., 2015).635

For each instance, the input is a 143-dimensional feature vector, which consists of 13-

dimensional Mel-Frequency Cepstral Coefficients (MFCCs) of 11 consecutive voice

frames, and the label is an ID (called a senone) that corresponds to the phoneme of the

voice frames. The labels are obtained by running Kaldi’s default Librispeech acoustic

model training script and the force alignment algorithm on the trained tri4b GMM-640

HMM (i.e., Gaussian Mixture Models and Hidden Markov Models) acoustic model.

We use 160 sentences to generate a training set and the remaining 40 sentences to

32

Dataset - ASR-200 # Trees Acc. Time (s) Mem. (GB)

Silas (NB+RT) 100 0.5121 161 23

Silas (WC+RT) 100 0.5149 168 22.6

Silas (HV+RT) 100 0.5873 160 2.3

Silas (HV+RT) 1,000 0.6253 1,558 6.7

Ranger 100 0.5239 29,782 3.0

Scikit-learn 100 0.5253 2,152 29.5 + 27.4 (swap)

Table 9: Experiment results for the ASR-200 dataset. Time and memory usage is measured the same way as

in Table 8.

generate a test set. The training set contains 63,197 instances, and the test set contains

15,960 instances. Overall, each class has at most 380 instances. We give the results

in Table 9. We do not report the AUC because calculating multi-class AUC for the645

1,332 classes is too time-consuming. H2O could not load the dataset because there

are too many classes, so we test Scikit-learn (Pedregosa et al., 2011) instead. We use

max depth 64, leaf size 1 and feature proportion 0.4 because these settings perform

well for this dataset using our methods. Results from default settings of Ranger and

Scikit-learn are reported in Appendix C, where they obtained 0.54 accuracy. Even NB650

and WC use too much memory when dealing with a large number of classes. As a

result, we are only able to train more trees with HV on our machine within 10 hours.

HV +RT obtained significantly better results than others in both Table 9 and Appendix

C.

5.3. Summary of Experimental Results655

We propose numerous customisations to the bagging and the AdaBoost algorithm

and test various combinations of the proposed sub-algorithms in the Silas framework

on a range of medium to large datasets. Experimental results show that our methods,

especially NB+RT , WC+RT and HV +RT , often outperform state-of-the-art tools

and recent research results. This shows that the customisations in different parts of the660

ensemble trees method add up, and they together contribute to noticeable advantages

over the existing methods. We summarise the characteristic of the proposed methods

in Table 10, which acts as a guide for using the Silas machine learning framework.

33

Method Pro Con

UB+GT Fast, memory-efficient, good AUC for

binary classification.

Poor accuracy.

PS+RT Produces a subsample of data that

yields good AUC and accuracy.

Slightly slower than other Silas

methods.

NB+RT Well-rounded, excellent AUC and

accuracy for most problems.

Slightly larger memory footprint than

other Silas methods.

WC+RT High accuracy for multi-class problems. Sub-par AUC on some binary-class

datasets.

HV +RT High accuracy for multi-class

problems, memory-efficient when

#classes is large.

Generally poor AUC for binary

classification, very slow on some

datasets (e.g., led5000).

Table 10: Summary of the Silas methods in this paper.

In the experiment, different datasets have been used to evaluate Silas and led to

varying sizes of decision trees. In a number of cases, decision trees can be huge. For665

example, the 1M flight dataset can result in decision trees that usually contain 30K

leaves. Although decision trees are white-box models that can be directly observed

and explained by humans, it is extremely difficult for humans to observe and explain

very large decision trees and large forests of large decision trees, e.g., 100 trees with

30K leaves on each tree. This motivated us to use automated reasoning techniques to670

enable computers to discover explanations for decision trees automatically. In the next

section, we will describe the explanation module in Silas.

6. Applications of Logical Reasoing in Machine Learning

This section concerns eXplainable AI and safe machine learning. We describe

our solution towards a more trustworthy machine learning technique using logic and675

automated reasoning as the backbone. We discuss the Model Audit module for for-

mally verifying prediction models against user specifications, the Enforcement Learn-

ing module for training correct-by-construction models, Model Insight for explaining

prediction models and Prediction Insight for explaining prediction instances. The dis-

34

cussion in this section is focused on binary classification, which is closer to most log-680

ical reasoning tasks than multi-class classification, though a multi-class problem can

also be handled by the methods in this section through encodings such as one-vs-one

and one-vs-all. We consider logical reasoning for general multi-class problems as fu-

ture work.

6.1. Logical Semantics of Decision Trees685

Given a decision tree, we can obtain the following types of logical formulae:

Internal Node formula: a logical formula corresponding to every internal node.

Branch formula: a logical formula (
∧

N)→ (y = M(dl)), where N is the set of inter-

nal node formulae along the branch leading to the leaf l and dl is the distribution

associated with l.690

Tree formula: a logical formula
∨

B, where B is the set of branch formulae.

Each of the formula mentioned above is associated with a weight. An internal

node formula is weighted by the information gain computed during training. A branch

formula leading to a leaf l is weighted by the value log2(2)−H(l) where H(l) is the

entropy (Shannon, 1948) of the leaf l. A tree formula is weighted by the ROC-AUC695

score obtained on its out-of-bag sample during training.

6.2. Model Audit

The purpose of the model audit module is to provide the means to certify that

the prediction model complies with user specifications formally. To do so, we adopt

advanced automated reasoning techniques, especially satisfiability modulo theories700

(SMT) solvers (De Moura and Bjørner, 2011). SMT solvers determine the satisfiability

of logical formulae with respect to combinations of background theories expressed in

classical first-order logic with equality. A logical formula f is said satisfiable, denoted

by SAT (f), if and only if there exists a valuation assigning values to its variables such

that it is evaluated to true.705

A user specification is a tuple S= 〈s⊥,s>〉where s⊥ and s> are logical formula over

{x1, ...,xn}. In real-life applications, there are often some mandatory specifications,

35

which we refer to as “hard specs”, and some that are optional, which we refer to as

“soft specs”. The user can use the Model Audit feature to check both types of specs

and rate the model based on the verification results. For “hard specs”, we propose710

Enforcement Learning (cf. Section 6.3) to train models that are guaranteed correct.

A prediction model complies with the user specification S if for all input instance

x ∈ X leading to a positive (resp. negative) prediction, s>(x) (resp. s⊥(x)) evaluates

to true. Formally, a user specification S is valid over a prediction model G : X →D(Y),

denoted by G |= S, if and only if:

∀ x ∈ X ,((M(G(x)) = negative)→ s⊥(x))∧ ((M(G(x)) = positive)→ s>(x)). (13)

To verify the validity of a user specification S over an ensemble trees model ET , i.e.

ET |= S, we propose to reduce the problem to the verification of the validity of S over

each of the decision trees in T .

Theorem 6.1 (Soundness). If S is valid over all tree in T , i.e. ∀ ti ∈ T, ti |= S, then S715

is valid over ET , i.e. ET |= S.

Proof. (Outline) Without loss of generality, let us consider an ensemble trees model

ET based on two trees, i.e. T = {〈w1, t1〉,〈w2, t2〉}. Now assume that ∀ ti ∈ T, ti |= S.

Given an arbitrary x ∈ X , we have to consider two case: (i) M(t1(x)) = M(t2(x)) and

(ii) M(t1(x)) 6= M(t2(x)). Case i: Let y ∈ Y such that M(t1(x)) = M(t2(x)) = y then,720

by definition of ET , we have M(ET (x)) = y and we can conclude that ((M(ET (x)) =

negative)→ s⊥(x))∧((M(ET (x))= positive)→ s>(x)) holds. Case ii: Without loss of

generality, let us consider the case where M(t1(x)) = positive and M(t2(x)) = negative.

Since we assumed that t1 |= S and M(t1(x)) = positive, we know that s>(x) holds.

Similarly, since we assumed that t2 |= S and M(t2(x)) = negative, we know that s⊥(x)725

holds. We can conclude that s>(x)∧ s⊥(x) holds, hence ((M(ET (x)) = negative)→

s⊥(x))∧ ((M(ET (x)) = positive)→ s>(x)) holds.

We note that this reduction is not sound when considering multiclass classification,

where the number of classes is greater than two. Further, this reduction is not complete

since a tree could violate the specification while being outnumbered by trees that com-730

ply with the specification in the aggregation phase of the ensemble tree model. This

36

is a trade-off purposefully made to reduce the overall complexity in order to achieve

better scalability because the completeness of verification renders the computation un-

scalable (Törnblom and Nadjm-Tehrani, 2019).

We now proceed to show that, using the reduction we described, SMT solver can be

efficiently applied to the verification of user specification over ensemble tree models.

Let t be a tree and Ft its corresponding tree formula, the user specification S is valid

over t if and only if:

¬SAT (Ft ∧¬(((y = negative)→ s⊥(x))∧ ((y = positive)→ s>(x)))) (14)

By Theorem 6.1 this means that we can use SMT solvers to verify the validity of a735

user specification over ensemble trees models. This can be done in a parallel fashion

since each tree of an ensemble trees model can be verified independently.

The Model Audit feature employs the Z3 solver (de Moura and Bjørner, 2008). The

interaction with Z3 is straightforward as Silas supports direct translation from logical

formulae to the z3::expr type in Z3 C++ binding.740

The remainder of this section presents a case study and report experimental results

demonstrating the feasibility and efficiency of the proposed approach.

Case study. We use the Kick dataset as a real-life application to illustrate the Model

Audit feature. The goal of this dataset is to predict whether a used car at an auction is

a good buy or a bad buy. In a hypothetical scenario where carmaker B discovered that745

model C produced in year YY have problems and they had recalled all those cars. We

wish to check if our prediction model already “knows” this. We formulate the spec-

ification as follows: (y = positive)→ ¬(make = B∧model = C∧ year = YY). The

Model Audit feature can be used to check if the prediction model meets the specifica-

tion. In case it does not, we can use Enforcement Learning described in the following750

section to train a new model that builds in this information. Running Model Audit on

the new model again shows that it meets the specification (guaranteed).

To evaluate the efficiency of the verification procedure, we generate models of var-

ious sizes (in terms of the number of trees and leaf size) for the Kick dataset and record

the computation time of the Model Audit feature when verifying the above property.755

37

Figure 2: Experiment results of Model Audit.

Experimental results are given in Figure 2. We observe that, as expected, the compu-

tation time grows linearly with respect to the number of trees and exponentially with

respect to the depth of trees. Full trees in this example are often smaller than depth 32,

so the increase from depth 16 to 32 is not large. The verification time for models with

positive results and negative results are almost identical. Overall, the verification can760

be done in a reasonable time (< 20 min) for models with 1000 trees of depth 32.

6.3. Enforcement Learning

The purpose of the Enforcement Learning module is to provide the means to build

prediction models that, given a user specification, are correct-by-construction. This

feature is notably used in the context of critical or regulated applications. It can also be765

used to enforce additional knowledge given by domain experts.

Given a user specification S = 〈s⊥,s>〉, Enforcement Learning proceeds as follows:

(1) It filters out from the dataset all instance 〈x,y〉 where:

((y = negative)∧¬(s⊥))∨ ((y = positive)∧¬(s>)) (15)

(2) It constructs trees of the form given by figure 3 where t is a tree grown from the

filtered dataset.

Trees built according to the above procedure are, by construction, valid with respect770

to the given user specification. By theorem 6.1 the resulting ensemble tree models are

also valid with respect to the given user specification.

38

s⊥

(1,0)

(0,1)
t

true

true

false

false

s>

Figure 3: Template of correct-by-construction trees

6.4. Model Insight

When the user obtains a model with satisfactory performance, we provide a feature

named Model Insight for analysing the general decision-making of the model.775

Given a label v (e.g. positive), we are interested in knowing which set of input

values would be predicted as v by an ensemble tree model ET . This way, domain

experts may use their knowledge to confirm or refute the rationale exhibited by ET

when predicting label v.

To achieve this, we consider the set B of branches in trees of ET that predict v.780

This set corresponds to the set FB of weighted branch formulae. We can then ap-

ply automated reasoning techniques to extract the maximum satisfiable subset cor-

responding to the set of input values on which the majority of branches in B agree,

and this subset is called the maximum satisfiable core (MSC) (Liffiton and Sakallah,

2009). Generally speaking, for a logical formula φ in the conjunctive normal form,785

e.g., φ ≡ D1 ∧ . . .∧DN , where N is the number of clauses and each Di (i = 1, . . . ,N)

is a disjunctive clause, a MSC of φ can be defined as a subset SMSC ⊆ {D1, . . . ,DN}

such that all clauses in SMSC are satisfiable and the cardinality of SMSC is maximum. In

our application, we additionally associate with each sub-formula Di a weight, which

is computed from the information gain of the corresponding node. We then try to find790

a satisfiable subset SMSC that maximises the total weight. The resultant subset thus

represents the

“most informative explanations that are consistent”.

39

This variant of the problem is called Max-Sat, which can be solved using SMT solvers

such as Z3 (de Moura and Bjørner, 2008). However, when considering all formu-795

lae in FB, the resulting MSC relates to a very small set of input values for which the

model predicts v with very high confidence. Such an MSC corresponds to very specific

cases that are not useful in general explanations of the prediction model. Therefore,

to broaden the scope of the explanation, we sample at three different levels: the node

level, the branch level and the tree level. The sampling results in MSCs that correspond800

to more general explanations.

The explanations based on MSC extraction can be combined with feature impor-

tance to illustrate the decision-making of the prediction model better. There are sev-

eral methods to compute feature importance in the literature, e.g., (Altmann et al.,

2010). Our computation and presentation of feature importance are based on the805

change in entropy, which is similar to the LIME tool (Ribeiro et al., 2016) and the

SHAP method (Lundberg and Lee, 2017). In turn, these methods improve upon earlier

work, such as the ranking of the importance of predictors (Breiman et al., 1984). How-

ever, feature importance is only one of many components in our explanation, which

also includes other aspects such as logical explanation and visualisations in pie charts810

and bar charts.

Case study. Consider the diabetes dataset (Dua and Graff, 2019). The eight features

are the number of times pregnant (preg), plasma glucose concentration (plas), diastolic

blood pressure (pres), 2-hour serum insulin (insu), triceps skinfold thickness (skin),

body mass index (mass), diabetes pedigree function (pedi) and age. We build a forest815

of 100 trees with the default settings of Silas and perform the Model Insight analysis on

the best model in 10-fold cross-validation. Figure 4 shows the feature importance score

of the model. The values are normalised into percentages; thus, we can read the figure

as “the feature age contributes 26.55% of the decision making of the model”. Table 11

gives the general decision logic of the same model derived from our MSC extraction820

method. The pedi and insu features are less important, and we do not show them in

Table 11. The decision logic is divided into the constraints that lead to positive diabetes

and those that lead to negative diabetes. Medical practitioners can cross-reference the

40

pie chart and the table to evaluate whether the logic of the model is consistent with

their knowledge. Disclaimer: the diabetes dataset only contains 768 instances, and825

their characteristics may not be representative for a larger population.

Figure 4: Model Insight: feature importance.

Decision Logic

Po
si

tiv
e

30≤ age < 47

N
eg

at
iv

e

21≤ age < 27

31≤ skin < 99 0≤ skin < 31

155≤ plas < 157 103≤ plas < 120

40≤ pres < 122 0≤ pres < 68

30≤ mass < 40.8 0≤ mass < 29.8

Table 11: Model Insight: decision logic.

Figure 5: Prediction Insight examples.

41

6.5. Prediction Insight

The Prediction Insight feature aims at providing users with the decision logic corre-

sponding to individual predictions. This aspect is often an essential element in critical

or regulated predictive applications.830

Any decision tree, and by extension any ensemble tree model, can be seen as a

simple decision rules system composed of rules of the form:

if condition then prediction. (16)

Consider an instance x ∈ X and the decision tree t, the condition of the decision

rule associated with the prediction t(x) is the branch formula that leads to the predic-

tion t(x). Likewise, consider the ensemble tree ET , the condition of the decision rule

associated with the prediction Et(x) is the conjunction of all the branch formula that

lead to the predictions t1(x), ..., tm(x).835

Similar to model insights, prediction insights can be mixed with feature impor-

tance scores of individual predictions obtained from feature attribution methods such

as SHAP (Lundberg and Lee, 2017) as illustrated by the following case study.

Case study. Figure 5 illustrates a typical prediction insight’s output on an instance

from the diabetes dataset. The model predicts that there is 62.96% chance that the840

patient has diabetes. The figure shows how each feature contributes to the prediction

and the range at which it does so.

7. Conclusion and Future Work

This work introduced a new machine learning tool called Silas: an ensemble trees

learning framework with a formal foundation and customised algorithms. We give845

empirical evidence that Silas has state-of-the-art predictive performance and is often

faster and more memory-efficient than others. Our framework enables the application

of logical reasoning and formal verification in machine learning. We demonstrated the

“white-box” potential of our approach through a number of proof-of-concept features:

Model Audit, which formally verifies user specifications against predictive models;850

42

Enforcement Learning, which generates predictive models that are guaranteed to sat-

isfy user specifications; Model Insight, which provides explanations on how the model

works; and a special case of the above called Prediction Insight, which explains how a

particular prediction is made.

In the future, we plan to develop the above concepts into mature applications fur-855

ther. We notably intend to pursue the following research directions:

• Model Audit: develop sound and complete verification method that adopts for-

mulae simplification, model reduction and model checking techniques.

• Model Insight: develop automated insight ranking, selection and visualisation

techniques, evaluate the insight through theoretically founded metrics.860

• Other ML tasks: we also intend to address the “white-box” aspects for multi-

class classification and regression.

Additionally, we will apply Silas to more industrial projects. As Silas’ high-performance

computing mechanisms can significantly reduce the cost of computational resource, we

believe that Silas can be used on machines ranging from mobile devices to worksta-865

tions, which will broaden the applications of ensemble trees.

References

Abrahams, D. and Gurtovoy, A. (2004). C++ Template Metaprogramming: Concepts,

Tools, and Techniques from Boost and Beyond (C++ in Depth Series). Addison-

Wesley Professional.870

Aha, D. W., Kibler, D., and Albert, M. K. (1991). Instance-based learning algorithms.

Machine Learning, 6(1):37–66.

Altmann, A., Toloşi, L., Sander, O., and Lengauer, T. (2010). Permutation importance:

a corrected feature importance measure. Bioinformatics, 26(10):1340–1347.

Angiulli, F. (2007). Fast nearest neighbor condensation for large data sets classification.875

IEEE Transactions on Knowledge and Data Engineering, 19(11):1450–1464.

43

Barsacchi, M., Bechini, A., and Marcelloni, F. (2020). An analysis of boosted ensem-

bles of binary fuzzy decision trees. Expert Syst. Appl., 154:113436.

Bishop, C. M. (2007). Pattern recognition and machine learning, 5th Edition. Infor-

mation science and statistics. Springer.880

Bonacina, M. P. (2017). Automated reasoning for explainable artificial intelligence. In

ARCADE 2017, 1st International Workshop on Automated Reasoning: Challenges,

Applications, Directions, Exemplary Achievements, Gothenburg, Sweden, 6th Au-

gust 2017, pages 24–28.

Breiman, L. (2001). Random forests. Mach. Learn., 45(1):5–32.885

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification

and Regression Trees. Wadsworth.

Bride, H., Dong, J., Dong, J. S., and Hóu, Z. (2018). Towards dependable and explain-

able machine learning using automated reasoning. In Formal Methods and Soft-

ware Engineering - 20th International Conference on Formal Engineering Methods,890

ICFEM 2018, Gold Coast, QLD, Australia, November 12-16, 2018, Proceedings,

pages 412–416.

Carmack, J. (2012). In-depth: Functional programming in C++. https:

//www.gamasutra.com/view/news/169296/Indepth_Functional_

programming_in_C.php.895

Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., and Elhadad, N. (2015). Intel-

ligible models for healthcare: Predicting pneumonia risk and hospital 30-day read-

mission. In Proceedings of the 21th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’15, pages 1721–1730, New York,

NY, USA. ACM.900

Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages

785–794.

44

https://www.gamasutra.com/view/news/169296/Indepth_Functional_programming_in_C.php
https://www.gamasutra.com/view/news/169296/Indepth_Functional_programming_in_C.php
https://www.gamasutra.com/view/news/169296/Indepth_Functional_programming_in_C.php
https://www.gamasutra.com/view/news/169296/Indepth_Functional_programming_in_C.php
https://www.gamasutra.com/view/news/169296/Indepth_Functional_programming_in_C.php

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Se-905

bastiani, R., and Tacchella, A. (2002). NuSMV Version 2: An OpenSource Tool for

Symbolic Model Checking. In Proc. International Conference on Computer-Aided

Verification (CAV 2002), volume 2404 of LNCS, Copenhagen, Denmark. Springer.

Cochran, W. G. (1977). Sampling Techniques, 3rd Edition. John Wiley.

Cook, D. (2016). Practical machine learning with H2O: powerful, scalable techniques910

for deep learning and AI. O’Reilly Media, Inc.

Cui, Z., Chen, W., He, Y., and Chen, Y. (2015). Optimal action extraction for random

forests and boosted trees. In Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’15, pages 179–188,

New York, NY, USA. ACM.915

Cumby, C., Fano, A., Ghani, R., and Krema, M. (2004). Predicting customer shopping

lists from point-of-sale purchase data. In Proceedings of the tenth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 402–409.

ACM.

De, A. and Chowdhury, A. S. (2020). Dti based alzheimer’s disease classification with920

rank modulated fusion of cnns and random forest. Expert Syst. Appl., Article In

Press.

de Moura, L. and Bjørner, N. (2008). Z3: An efficient SMT solver. In Ramakrishnan,

C. R. and Rehof, J., editors, Tools and Algorithms for the Construction and Analysis

of Systems, pages 337–340, Berlin, Heidelberg. Springer Berlin Heidelberg.925

De Moura, L. and Bjørner, N. (2011). Satisfiability modulo theories: introduction and

applications. Communications of the ACM, 54(9):69–77.

Dua, D. and Graff, C. (2019). UCI machine learning repository. http://archive.

ics.uci.edu/ml.

Ehlers, R. (2017). Formal verification of piece-wise linear feed-forward neural net-930

works. In Automated Technology for Verification and Analysis - 15th International

45

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Symposium, ATVA 2017, Pune, India, October 3-6, 2017, Proceedings, pages 269–

286.

Eliot, L. and Eliot, M. (2017). Autonomous Vehicle Driverless Self-Driving Cars and

Artificial Intelligence: Practical Advances in AI and Machine Learning. LBE Press935

Publishing, 1st edition.

Esteve, M., Aparicio, J., Rabasa, A., and Rodrı́guez-Sala, J. J. (2020). Efficiency anal-

ysis trees: A new methodology for estimating production frontiers through decision

trees. Expert Syst. Appl., 162:113783.

Freund, Y. and E Schapire, R. (1999). A short introduction to boosting. Journal of940

Japanese Society for Artificial Intelligence, 14:771–780.

Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. Machine

Learning, 63(1):3–42.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural networks.

In Proceedings of the Fourteenth International Conference on Artificial Intelligence945

and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011, pages 315–

323.

Gomez-Uribe, C. A. and Hunt, N. (2016). The netflix recommender system: Al-

gorithms, business value, and innovation. ACM Trans. Management Inf. Syst.,

6(4):13:1–13:19.950

Goré, R., Olesen, K., and Thomson, J. (2014). Implementing tableau calculi using

BDDs: BDDTab system description. In Automated Reasoning - 7th International

Joint Conference, IJCAR 2014, Held as Part of the Vienna Summer of Logic, VSL

2014, Vienna, Austria, July 19-22, 2014. Proceedings, pages 337–343.

Hara, S. and Hayashi, K. (2018). Making tree ensembles interpretable: A Bayesian955

model selection approach. In International Conference on Artificial Intelligence

and Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary

Islands, Spain, pages 77–85.

46

Harasymiv, V. (2015). Lessons from 2 million machine learn-

ing models on Kaggle. https://www.kdnuggets.com/2015/12/960

harasymiv-lessons-kaggle-machine-learning.html.

Hart, P. (1968). The condensed nearest neighbor rule (corresp.). IEEE Transactions on

Information Theory, 14(3):515–516.

Hastie, T., Rosset, S., Zhu, J., and Zou, H. (2009). Multi-class AdaBoost. Statistics

and its Interface, 2(3):349–360.965

He, J., Yalov, S., and Hahn, P. R. (2019). Xbart: Accelerated Bayesian additive regres-

sion trees. In Chaudhuri, K. and Sugiyama, M., editors, Proceedings of Machine

Learning Research, volume 89 of Proceedings of Machine Learning Research, pages

1130–1138. PMLR.

Heer, N. (2019). Speed comparison of programming languages. https://github.970

com/niklas-heer/speed-comparison.

Hinton, G., Deng, L., Yu, D., Dahl, G., rahman Mohamed, A., Jaitly, N., Senior, A.,

Vanhoucke, V., Nguyen, P., Sainath, T., and Kingsbury, B. (2012). Deep neural

networks for acoustic modeling in speech recognition: The shared views of four

research groups. IEEE Signal Process. Mag., 29(6):82–97.975

Iorio, C., Aria, M., D’Ambrosio, A., and Siciliano, R. (2019). Informative trees by

visual pruning. Expert Syst. Appl., 127:228–240.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T. (2017).

LightGBM: A highly efficient gradient boosting decision tree. In Advances in Neu-

ral Information Processing Systems 30: Annual Conference on Neural Information980

Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages 3146–

3154.

Kononenko, I. (2001). Machine learning for medical diagnosis: History, state of the art

and perspective. Artif. Intell. Med., 23(1):89–109.

47

https://www.kdnuggets.com/2015/12/harasymiv-lessons-kaggle-machine-learning.html
https://www.kdnuggets.com/2015/12/harasymiv-lessons-kaggle-machine-learning.html
https://www.kdnuggets.com/2015/12/harasymiv-lessons-kaggle-machine-learning.html
https://github.com/niklas-heer/speed-comparison
https://github.com/niklas-heer/speed-comparison
https://github.com/niklas-heer/speed-comparison

Liffiton, M. H. and Sakallah, K. A. (2009). Generalizing core-guided max-sat. In The-985

ory and Applications of Satisfiability Testing - SAT 2009, 12th International Confer-

ence, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings, pages 481–494.

Liu, X., Wu, J., and Zhou, Z. (2009). Exploratory undersampling for class-imbalance

learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernet-

ics), 39(2):539–550.990

Losing, V., Wersing, H., and Hammer, B. (2018). Enhancing very fast decision trees

with local split-time predictions. In IEEE International Conference on Data Mining,

ICDM 2018, Singapore, November 17-20, 2018, pages 287–296.

Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model pre-

dictions. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-995

wanathan, S., and Garnett, R., editors, Advances in Neural Information Processing

Systems 30, pages 4765–4774. Curran Associates, Inc.

More, A. (2016). Survey of resampling techniques for improving classification perfor-

mance in unbalanced datasets. arXiv:1608.06048.

OpenML (2019). Creditcard dataset. https://www.openml.org/d/1597.1000

Pafka, S. (2018). A minimal benchmark for scalability, speed and accuracy of com-

monly used open source implementations of the top machine learning algorithms for

binary classification. https://github.com/szilard/benchm-ml.

Pafka, S. (2019). Flight dataset. https://github.com/szilard/benchm-ml/

tree/master/z-other-tools.1005

Panayotov, V., Chen, G., Povey, D., and Khudanpur, S. (2015). Librispeech: An ASR

corpus based on public domain audio books. In 2015 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 5206–5210.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-

del, M., Prettenhofer, P., Weiss, R., Dubourg, V., VanderPlas, J., Passos, A., Courna-1010

peau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine

learning in Python. J. Mach. Learn. Res., 12:2825–2830.

48

https://www.openml.org/d/1597
https://github.com/szilard/benchm-ml
https://github.com/szilard/benchm-ml/tree/master/z-other-tools
https://github.com/szilard/benchm-ml/tree/master/z-other-tools
https://github.com/szilard/benchm-ml/tree/master/z-other-tools

Piltaver, R., Lustrek, M., Dzeroski, S., Gjoreski, M., and Gams, M. (2021). Learning

comprehensible and accurate hybrid trees. Expert Syst. Appl., 164:113980.

Post, N. Y. (2016). Toddler asks Amazon’s Alexa to play song but gets porn instead,1015

New York Post, December 30 [online]. https://nypost.com/2016/12/30/

toddler-asks-amazons-alexa-to-play-song-but-gets-porn-instead/.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann,

M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G., and Vesely, K.

(2011). The Kaldi speech recognition toolkit. In IEEE 2011 workshop on automatic1020

speech recognition and understanding, IEEE Signal Processing Society.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). “Why should I trust you?”: Ex-

plaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD1025

International Conference on Knowledge Discovery and Data Mining, San Francisco,

CA, USA, August 13-17, 2016, pages 1135–1144.

Rodrı́guez, J. J., Juez-Gil, M., Arnaiz-González, Á., and Kuncheva, L. I. (2020). An

experimental evaluation of mixup regression forests. Expert Syst. Appl., 151:113376.

Ross, C. and Swetlitz, I. (2018). IBM’s Watson supercomputer rec-1030

ommended “unsafe and incorrect” cancer treatments, internal documents

show, STAT, July 25 [online]. https://www.statnews.com/2018/07/25/

ibm-watson-recommended-unsafe-incorrect-treatments/.

Ruggieri, S. (2017). Enumerating distinct decision trees. In Precup, D. and Teh, Y. W.,

editors, Proceedings of the 34th International Conference on Machine Learning,1035

volume 70 of Proceedings of Machine Learning Research, pages 2960–2968, Inter-

national Convention Centre, Sydney, Australia. PMLR.

Schapire, R. E. (2013). Explaining AdaBoost. In Empirical Inference - Festschrift in

Honor of Vladimir N. Vapnik, pages 37–52.

49

https://nypost.com/2016/12/30/toddler-asks-amazons-alexa-to-play-song-but-gets-porn-instead/
https://nypost.com/2016/12/30/toddler-asks-amazons-alexa-to-play-song-but-gets-porn-instead/
https://nypost.com/2016/12/30/toddler-asks-amazons-alexa-to-play-song-but-gets-porn-instead/
https://www.statnews.com/2018/07/25/ibm-watson-recommended-unsafe-incorrect-treatments/
https://www.statnews.com/2018/07/25/ibm-watson-recommended-unsafe-incorrect-treatments/
https://www.statnews.com/2018/07/25/ibm-watson-recommended-unsafe-incorrect-treatments/

Shannon, C. E. (1948). A mathematical theory of communication. Bell system techni-1040

cal journal, 27(3):379–423.

Tanno, R., Arulkumaran, K., Alexander, D., Criminisi, A., and Nori, A. (2019). Adap-

tive neural trees. In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of

the 36th International Conference on Machine Learning, volume 97 of Proceedings

of Machine Learning Research, pages 6166–6175, Long Beach, California, USA.1045

PMLR.

Tannor, P. and Rokach, L. (2019). Augboost: Gradient boosting enhanced with step-

wise feature augmentation. In Proceedings of the Twenty-Eighth International Joint

Conference on Artificial Intelligence, IJCAI-19, pages 3555–3561. International

Joint Conferences on Artificial Intelligence Organization.1050

Tao, Q., Li, Z., Xu, J., Xie, N., Wang, S., and Suykens, J. A. (2020). Learning with

continuous piecewise linear decision trees. Expert Syst. Appl., Article In Press.

Tomek, I. (1976). Two modifications of CNN. IEEE Transactions on Systems, Man,

and Cybernetics, SMC-6(11):769–772.

Turkson, R. E., Baagyere, E. Y., and Wenya, G. E. (2016). A machine learning ap-1055

proach for predicting bank credit worthiness. In 2016 Third International Confer-

ence on Artificial Intelligence and Pattern Recognition (AIPR), pages 1–7.

Törnblom, J. and Nadjm-Tehrani, S. (2019). Formal Verification of Random Forests in

Safety-Critical Applications: 6th International Workshop, FTSCS 2018, Gold Coast,

Australia, November 16, 2018, Revised Selected Papers, pages 55–71. Springer.1060

Vanschoren, J., van Rijn, J. N., Bischl, B., and Torgo, L. (2013). OpenML: networked

science in machine learning. SIGKDD Explorations, 15(2):49–60.

Wright, M. and Ziegler, A. (2017). Ranger: A fast implementation of random forests

for high dimensional data in C++ and R. Journal of Statistical Software, Vol. 77.

Yang, B., Shen, S., and Gao, W. (2019). Weighted oblique decision trees. In The1065

Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-

First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The

50

Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI

2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 5621–5627.

Yang, L., Liu, S., Tsoka, S., and Papageorgiou, L. G. (2017). A regression tree ap-1070

proach using mathematical programming. Expert Syst. Appl., 78:347–357.

Zhang, W. and Ntoutsi, E. (2019). Faht: An adaptive fairness-aware decision tree

classifier. In Proceedings of the Twenty-Eighth International Joint Conference on

Artificial Intelligence, IJCAI-19, pages 1480–1486. International Joint Conferences

on Artificial Intelligence Organization.1075

51

Appendix A. Full Table for Mid-Large Datasets

Table A.12 shows the experimental results for 100 trees, leaf size 64, and tree max

depth 64 from all the tested tools and methods. We compare the Silas methods, which

include 10 combinations of the the sub-algorithms described in the previous section,

with H2O and Ranger. The settings used are: 100 trees, 64 max tree depth, 64 min leaf1080

size, and default settings of each tool otherwise. The predictive performance measures

include area under the ROC curve (AUC) and predictive accuracy (Acc). For multi-

class classification, we compute an approximation of the multi-class AUC (avg. of

one vs rest) and the overall accuracy for all classes. H2O and Ranger do not report

multi-class AUC by default, so we only compare accuracy for multi-class datasets.1085

Training time is in seconds, and it includes the time for loading data and computing the

predictive performance. The “Total-binary” row reports the total numbers for binary

classification datasets. Except for flight, which is tested on a distinct testing dataset, all

other datasets are tested using 10-fold cross-validation and the AUC and anccuracy are

the average of those validations. We run the experiment 10 times (i.e., 10 times 10-fold1090

cross-validations for most datasets) and report the average AUC, accuracy, and time.

The 95% confidence interval of AUC and accuracy for the tested methods are usually

smaller than 0.001, so we do not show them in the table. We highlight the top results

in bold font. Top results are defined as those that are the best when rounded to the 3rd

decimal point.1095

Appendix B. Experimental Results for Mid-Large Datasets Using Default Set-

tings of H2O and Ranger

Table B.13 gives the experimental results on mid-large datasets from H2O and

Ranger using their default settings and 100 trees. By Default, H2O uses leaf size 1

and tree max depth 20, while Ranger uses leaf size 1 and unlimited tree depth. Time is1100

in seconds. H2O refused to run the led5000 dataset because it estimated that it would

use more than the 32GB memory limit, although it could use some swap memory.

52

Si
la

s
(U

B
+R

T
)

Si
la

s
(U

B
+G

T
)

Si
la

s
(N

B
+R

T
)

Si
la

s
(N

B
+G

T
)

H
2O

R
an

ge
r

D
at

as
et

A
U

C
A

cc
Ti

m
e

A
U

C
A

cc
Ti

m
e

A
U

C
A

cc
Ti

m
e

A
U

C
A

cc
Ti

m
e

A
U

C
A

cc
Ti

m
e

A
U

C
A

cc
Ti

m
e

di
ab

et
es

0.
82

98
0.

74
98

0
0.

80
82

0.
72

96
0

0.
82

97
0.

75
20

0
0.

80
87

0.
74

88
0

0.
81

55
0.

75
50

4
0.

83
90

0.
76

37
0

ki
ck

0.
76

33
0.

73
41

4
0.

76
76

0.
73

66
8

0.
76

80
0.

89
98

13
0.

76
82

0.
90

08
24

0.
76

09
0.

86
69

95
0.

76
58

0.
90

11
39

ad
ul

t
0.

90
54

0.
79

37
4

0.
91

64
0.

81
16

6
0.

90
79

0.
85

52
6

0.
91

74
0.

86
46

10
0.

91
47

0.
84

92
31

0.
91

85
0.

86
56

11
m

oz
ill

a4
0.

96
94

0.
92

97
1

0.
96

66
0.

92
69

2
0.

97
24

0.
93

63
1

0.
96

79
0.

92
86

3
0.

96
55

0.
93

46
14

0.
97

90
0.

94
59

2
jm

1
0.

73
44

0.
68

01
1

0.
74

31
0.

67
84

1
0.

74
90

0.
81

49
1

0.
75

27
0.

81
46

3
0.

73
19

0.
69

97
15

0.
75

50
0.

81
69

2
cr

ed
itc

ar
d

0.
97

99
0.

98
78

5
0.

97
93

0.
98

01
5

0.
97

77
0.

99
92

91
0.

96
35

0.
99

89
12

0.
97

60
0.

99
93

16
1

0.
96

02
0.

99
94

55
7

fli
gh

t
0.

73
07

0.
64

11
12

0.
75

35
0.

66
91

17
0.

73
77

0.
79

42
24

0.
76

15
0.

80
37

34
0.

74
42

0.
79

96
53

0.
72

25
0.

78
38

13
9

m
ni

st
-7

84
0.

99
74

0.
94

59
66

0.
97

62
0.

77
43

26
0.

99
75

0.
94

65
72

0.
97

62
0.

75
62

27
0.

93
92

30
26

0.
95

80
14

3
fa

sh
io

n-
m

ns
it

0.
98

81
0.

85
79

84
0.

93
52

0.
49

77
14

0.
98

81
0.

85
82

85
0.

93
51

0.
49

72
14

0.
85

67
32

66
0.

87
54

17
6

co
nn

ec
t-

4
0.

85
60

0.
68

50
5

0.
86

68
0.

69
23

6
0.

89
27

0.
76

97
12

0.
89

17
0.

78
43

13
0.

72
69

17
4

0.
77

00
19

le
d5

00
0

0.
93

19
0.

62
75

39
8

0.
90

43
0.

56
91

19
5

0.
93

20
0.

62
76

39
6

0.
90

44
0.

56
88

19
2

0.
62

36
83

95
0.

62
52

60
3

w
al

ki
ng

-a
ct

iv
ity

0.
94

19
0.

51
31

21
0.

82
32

0.
27

00
5

0.
96

76
0.

63
63

57
0.

84
46

0.
18

53
7

0.
61

74
94

8
0.

64
88

11
6

co
ve

r-
ty

pe
0.

93
97

0.
63

87
48

0.
83

70
0.

28
95

11
0.

99
01

0.
88

41
27

3
0.

89
25

0.
48

83
26

0.
87

63
44

44
0.

83
15

34
3

To
ta

l-
bi

na
ry

5.
91

28
5.

51
63

26
5.

93
48

5.
53

22
38

5.
94

24
6.

05
17

13
8

5.
93

99
6.

06
01

86
5.

94
06

5.
95

91
37

8
5.

93
99

6.
07

64
75

0
To

ta
l

11
.5

67
9

9.
78

44
64

7
11

.2
77

5
8.

62
50

29
5

11
.7

10
4

10
.7

74
2

10
34

11
.3

84
5

9.
34

02
36

5
5.

90
87

10
.5

44
1

20
62

5
5.

93
99

10
.7

85
3

21
51

Si
la

s
(A

B
+R

T
)

Si
la

s
(A

B
+G

T
)

Si
la

s
(P

S+
R

T
)

Si
la

s
(P

S+
G

T
)

Si
la

s
(W

C
+R

T
)

Si
la

s
(W

C
+G

T
)

D
at

as
et

A
U

C
A

cc
Ti

m
e

A
U

C
A

cc
Ti

m
e

A
U

C
A

cc
Ti

m
e

A
U

C
A

cc
Ti

m
e

A
U

C
A

cc
Ti

m
e

A
U

C
A

cc
Ti

m
e

di
ab

et
es

0.
81

29
0.

74
86

0
0.

75
28

0.
70

67
0

0.
82

97
0.

75
84

0
0.

80
43

0.
74

27
0

0.
81

62
0.

75
51

0
0.

78
91

0.
72

83
0

ki
ck

0.
76

25
0.

88
37

18
0.

73
93

0.
88

45
29

0.
76

75
0.

89
76

26
0.

76
62

0.
89

85
33

0.
76

54
0.

90
09

21
0.

75
43

0.
89

97
31

ad
ul

t
0.

89
22

0.
82

59
9

0.
89

06
0.

81
52

13
0.

90
72

0.
84

90
11

0.
91

75
0.

85
79

14
0.

91
09

0.
85

71
11

0.
91

43
0.

85
92

15
m

oz
ill

a4
0.

97
76

0.
93

38
2

0.
96

99
0.

92
44

4
0.

97
10

0.
93

29
2

0.
96

74
0.

92
82

3
0.

97
89

0.
94

86
2

0.
97

23
0.

93
78

4
jm

1
0.

74
33

0.
79

64
2

0.
70

65
0.

76
59

4
0.

74
56

0.
81

10
2

0.
74

71
0.

81
38

3
0.

74
98

0.
81

84
3

0.
73

05
0.

81
65

4
cr

ed
itc

ar
d

0.
97

47
0.

99
92

12
1

0.
96

48
0.

99
94

14
2

0.
98

14
0.

99
93

12
7

0.
96

94
0.

99
94

11
3

0.
97

71
0.

99
94

11
1

0.
96

97
0.

99
92

64
fli

gh
t

0.
74

19
0.

78
33

37
0.

74
37

0.
78

50
48

0.
73

65
0.

79
83

28
0.

75
91

0.
80

26
36

0.
74

58
0.

80
13

41
0.

75
70

0.
80

37
53

m
ni

st
-7

84
0.

99
83

0.
96

24
10

7
0.

98
08

0.
82

46
61

0.
99

75
0.

94
66

52
2

0.
97

65
0.

76
74

48
3

0.
99

86
0.

96
59

11
3

0.
98

58
0.

90
62

68
fa

sh
io

n-
m

ns
it

0.
98

79
0.

86
87

12
8

0.
93

95
0.

57
32

53
0.

98
81

0.
85

79
54

5
0.

93
53

0.
48

84
48

9
0.

98
80

0.
88

42
13

3
0.

93
56

0.
57

74
54

co
nn

ec
t-

4
0.

89
94

0.
83

65
18

0.
89

24
0.

82
93

18
0.

88
61

0.
78

47
28

0.
89

06
0.

79
91

29
0.

89
88

0.
84

89
20

0.
90

03
0.

84
94

21
le

d5
00

0
0.

93
29

0.
63

11
53

1
0.

90
01

0.
56

82
25

3
0.

93
12

0.
62

61
62

3
0.

90
44

0.
56

84
43

3
0.

92
41

0.
64

74
58

2
0.

90
80

0.
60

07
27

6
w

al
ki

ng
-a

ct
iv

ity
0.

96
67

0.
63

48
63

0.
84

91
0.

18
24

10
0.

96
74

0.
63

60
76

0.
84

40
0.

18
60

27
0.

96
43

0.
66

63
71

0.
84

27
0.

21
99

11
co

ve
r-

ty
pe

0.
99

26
0.

92
53

35
5

0.
86

59
0.

58
01

47
0.

98
90

0.
87

98
49

1
0.

89
68

0.
49

64
27

5
0.

99
61

0.
95

44
39

8
0.

88
89

0.
64

51
53

To
ta

l-
bi

na
ry

5.
90

51
5.

97
09

18
9

5.
76

77
5.

88
11

24
0

5.
93

89
6.

04
65

19
7

5.
93

10
6.

04
30

20
3

5.
94

42
6.

08
08

18
8

5.
88

72
6.

04
44

17
0

To
ta

l
11

.6
82

7
10

.8
29

9
13

91
11

.1
95

5
9.

43
88

68
2

11
.6

98
2

10
.7

77
5

24
82

11
.3

78
6

9.
34

88
19

37
11

.7
14

0
11

.0
48

0
15

05
11

.3
48

4
9.

84
32

65
3

Ta
bl

e
A

.1
2:

E
xp

er
im

en
ta

lr
es

ul
ts

fo
rm

ed
iu

m
to

la
rg

e
da

ta
se

ts
.

53

H2O default Ranger default

Dataset AUC Acc Time AUC Acc Time

diabetes 0.8212 0.7639 4 0.8337 0.7617 0

kick 0.7520 0.8710 164 0.7618 0.9019 45

adult 0.9178 0.8541 45 0.9175 0.8648 13

mozilla4 0.9823 0.9534 15 0.9824 0.9542 3

jm1 0.7631 0.7513 21 0.7606 0.8225 3

creditcard 0.9760 0.9996 219 0.9558 0.9995 565

flight 0.7516 0.6781 126 0.7212 0.7838 156

Mnist-784 0.9689 5815 0.9698 162

Fashion-mnsit 0.8864 6771 0.8836 200

Connect-4 0.8214 302 0.7880 22

led5000 Out of Memory 0.6473 695

Walking-activity 0.6694 1054 0.6638 138

Cover-type 0.9286 3755 0.8427 335

Average 0.8520 (binary) 0.8455 (excl. led5000) 1,524 0.848 (binary) 0.8372 180

Table B.13: Experimental results using H2O and Ranger’s default settings and 100 trees.

Appendix C. Experimental Results for ASR-200 dataset Using Default Settings

of Ranger and Scikit-learn

Table C.14 gives the experimental results on the ASR-200 dataset from Ranger and1105

Scikit-learn using their default settings. Time and memory usage is measured the same

way as in Table 8. The main difference from Table 9 is that only
√

D, where D is the

total number of features, features are considered when selecting each node. We also

give the results from selected Silas methods under the same settings. Note that the ac-

tual parameters in Silas have different code-names than the abbreviations used in this1110

paper. We give the mapping below. RT → RdGreedy1D; GT → GreedyNarrow1D;

UB→ ClassicForest; NB→ SimpleForest; PS→ PrototypeSampleForest; WC→ Cas-

cadeForest; AB→ AdaBoostForest; HV → SimpleValueForest.

54

ASR-200 #trees Acc Time (s) Mem (GB)

Silas (NB+RT) 100 0.5115 48 27

Silas (WC+RT) 100 0.5124 59 27

Silas (HV+RT) 100 0.5738 45 2.6

Ranger 100 0.5487 4588 2.9

Scikit-learn 100 0.5467 397 30 + 32.9 (swap)

Table C.14: Experiment results for the ASR-200 dataset using Ranger and Scikit-learn’s default settings and

100 trees.

55

	Introduction
	Related Work
	Preliminaries
	Decision Trees With a Logical Foundation
	Ensemble of Decision Trees
	Silas
	Baseline

	Machine Learning in Silas
	Customised Algorithms in Silas
	Tree-level Algorithms
	Forest-level Algorithms
	Remarks

	High-Performance Computing for ML

	Experimental Results
	Results on Medium and Large Datasets
	Results on Larger Datasets
	Summary of Experimental Results

	Applications of Logical Reasoing in Machine Learning
	Logical Semantics of Decision Trees
	Model Audit
	Enforcement Learning
	Model Insight
	Prediction Insight

	Conclusion and Future Work
	Full Table for Mid-Large Datasets
	Experimental Results for Mid-Large Datasets Using Default Settings of H2O and Ranger
	Experimental Results for ASR-200 dataset Using Default Settings of Ranger and Scikit-learn

