
Towards Dependable and Explainable Machine
Learning Using Automated Reasoning

Hadrien Bride2, Jie Dong3, Jin Song Dong1,2, Zhé Hóu2

1 School of Computing, National University of Singapore, Singapore
2 Institute for Integrated and Intelligent Systems, Griffith University, Australia

3 Dependable Intelligence

Abstract. The ability to learn from past experience and improve in the future,
as well as the the ability to reason about the context of problems and extrapolate
information from what is known, are two important aspects of Artificial Intelli-
gence. In this paper, we introduce a novel automated reasoning based approach
that can extract valuable insights from classification and prediction models ob-
tained via machine learning. A major benefit of the proposed approach is that
the user can understand the reason behind the decision-making of machine learn-
ing models. This is often as important as good performance. Our technique can
also be used to reinforce user-specified requirements in the model as well as to
improve the classification and prediction.

1 Introduction

Philip Wadler once wrote that “powerful insights arise from linking two fields of study
previously thought separate” [6]. This paper, although does not provide a similar corre-
spondence relation between two fields such as logic and computation, aims at finding
an interesting application that combines machine learning and automated reasoning.
There have been various attempts at applying machine learning in automated reason-
ing. For instance, the automated reasoning tool Sledgehammer, which is a subsystem of
the proof assistant Isabelle/HOL, has a module named MaSh [4] which uses machine
learning to rank the relevance of known facts in the proof context based on previous
successful proofs and select a subset of facts that is estimated most helpful in proving
the existing goals. The other direction, i.e., applying automated reasoning in machine
learning, has not seen an application as far as we are aware of.

Recently, eXplainable Artificial Intelligence (XAI) has been gaining attention. The
prestigious International Joint Conference on Artificial Intelligence (IJCAI) has notably
been running a workshop specialised in this topic. From the automated reasoning com-
munity, Bonacina recently envisaged that automated reasoning could be the key to the
advances of XAI and machine learning [1]. To this end, she posed several questions and
challenges in this direction. Specifically,

“How can we bridge the gap between the statistical inferences of machine
learning and the logical inferences of reasoning, applying the latter to extract,
build, or speculate and test, explanations of the former?” [1]



This paper addresses the above challenge by proposing a novel framework which
enables the application of automated reasoning in machine learning. First, we study a
range of machine learning techniques and identify that models produced by (ensemble)
decision trees based techniques are suitable for formal analysis and automated reason-
ing. We then propose to use satisfiability modulo theories (SMT) solvers to perform
analysis on classification and prediction models given by machine learning. We discuss
some preliminary results using a new machine learning tool called Silas [3].

2 Machine Learning Techniques Reviewed

To solve a problem one has to choose the right tool. In our context, to fully support the
integration of automated reasoning techniques and to build towards a machine learn-
ing approach that is explainable and dependable, we require efficient machine learning
techniques (in term of both memory and time) that produce interpretable models.

Linear regressions (LR), while being easily interpretable, often fall short in perfor-
mance compared to other approaches [7].

Support vector machines (SVM) are popular and efficient tools, which, thanks to a
large number of kernels, can be applied to a variety of classification problems. However,
interpreting the models produced by SVM is far from trivial, especially when non-linear
kernels are used. Hence, SVM is often used as black-boxes.

Neural networks (NN) and deep learning (DL) techniques have been exceptionally
successful in analysing both structured and unstructured data, but the models they pro-
duce are intricate, hence NN and DL are often used as black-boxes, too. Also, NN and
DL are often computationally expensive.

In contrast to SVMs and NNs, decision trees (DT) based techniques such as ran-
dom forests (RF) and gradient boosting machines (GBM) are capable of producing
interpretable and explainable models due to the formal semantics associated with there
underlying tree structures. Moreover, when analysing structured data, RF and GBM
often outperform other approaches including DL [7, 5].

Given all the above observations, we conclude that a decision tree based machine
learning approach fits our needs. The formal semantics of decision trees offers an ideal
support for the application of formal methods.

3 Model Analysis and Engineering using SMT

This sections briefly presents some of the ideas we are actively developing. They pro-
vide the basic building blocks for the application of automated reasoning tools such as
SMT solvers to perform the analysis of decision tree based models.

Obtaining model predicates: Given a classification or a prediction model that con-
sists of a set of decision trees, we first need to extract logical formulae from the trees.
A decision tree in this context is a data structure in which every non-leaf node is as-
sociated with a logical formula that splits the data entries into two subsets. Assuming
that A,B, · · · are the classes to be classified or predicted in a data set. Each leaf node
contains a subset of data entries labelled by the classes. An algorithm such as majority



voting is then needed to obtain the final decision. There are multiple ways to obtain
logical formulae for model analysis. One can collect all the formulae from the root of
a tree to a leaf node with decision A, and the conjunction of these formulae, called the
branch formula, gives the reason why the subset of data entries in the leaf node are
classified/predicted as A. There could be multiple leaf nodes whose decisions are all
class A. The disjunction of all branch formulae which lead to class A represents the
overall decision-making of the tree with respect to class A. We refer to this disjunction
as the decision formula for class A. The decision formula for a class can then be used
in the analysis to check inconsistencies and extract the core reason behind the decision-
making. For a set of decision trees, we can extract the decision formula for class A on
each tree and perform analysis on the conjunction of multiple decision formulae.

Model anlaysis and engineering: Once the logical formulae are extracted, we can
perform a number of analyses on the formulae using automated reasoning techniques.
We list some of the specific techniques we have been successfully using so far.

Maximum Satisfiable Subset (MSS): To obtain the MSS, we assign a weight to each
sub-formula, and try to maximise the accumulated weight in the MAX-SMT optimisa-
tion problem. This can be achieved by certain SMT solvers such as Z3 and MathSAT
5. The weight assigned to each formula can be optimised to reflect the predictive per-
formance of the decision node or the decision tree. For instance, a decision node with
more information gain may have more weight, and a decision tree with higher predic-
tive accuracy may have more weight. The resulting MSS can give an indication of the
core attributes and the range of the attributes that lead to the decision-making of the
classification and prediction model. Note that a similar analysis is to extract maximal
satisfiable subsets, which is computationally cheaper, but we prefer the maximum sub-
set because it may give more insight about the decision-making.

Minimal Unsatisfiable Core (MUC): Solvers such as Z3 provide a straightforward
way to compute the MUC of a set of formulae. We can use this functionality to obtain
the inconsistencies in the model and use this information to fine-turn the model by trim-
ming the decision tree. This can form a recursive procedure in which we repeatedly find
the MUCs in a decision tree and trim the tree accordingly until the tree becomes a con-
sistent model. Another application is to use the MUC in boosting. A boosting algorithm
usually consists of iterative learning steps in which weak classifiers are introduced to
compensate the shortcomings of existing weak learners. The MUC can be effectively
used as the shortcomings of multiple learners, because it represents the disagreements
of multiple decision trees. We can then build weak classifiers around the MUC to boost
the model performance.

Model Verification: In certain applications, the user may specify some requirements
that a decision making procedure must satisfy. For instance, if machine learning is ap-
plied to classify whether a node in a network cluster is secure, our method may produce
a logical condition for deciding network security. If the user has other security require-
ments that must be satisfied, we can use SMT solving and model checking to verify
that the requirements hold in the learned model. If this is not true, then the MUC anal-
ysis can pinpoint the reason why the learned condition fails and we can use the MUC
to tweak the model by inserting decision nodes that enforce the user requirements and
obtain machine learning results that conform the user’s specifications.



4 Discussion

The model analysis and engineering component for machine learning can provide sev-
eral benefits to users at different levels: (1) The analysis can pinpoint the reason behind
the classification and prediction. This will help the user (e.g., decision maker) under-
stand what the key attributes are and how they lead to the result. Therefore, the user
can use the analytical information provided by this approach to make the final decision
based on their discretion. Moreover, the analytical information can help transform the
machine learning algorithm into a transparent process in which every decision can be
inspected and verified. (2) The analysis can also provide the reason why some models
have good performance while others have bad performance. Data scientists can use this
information to improve the learning process and perform hyperparameter tuning. (3)
Machine learners can use the MUC to fine-tune the models and improve classification
and prediction results. They can also use the MSC to build new and consistent models
that potentially have better results. (4) Model verification helps obtain machine learn-
ing results that conform with user-specified requirements. This is vital in providing a
machine learning technique that can be trusted.

We have implemented and experimented with the approach introduced in this paper.
We have produced a module for the machine learning tool Silas [3]. As an example, on
a diabetes data set [2], we are able to analyse a random forest model and obtain a
set of “core reasons” behind each class (negative/positive diabetes). By comparing the
core reasons, we derive that 30 ≤ age ≤ 34 and 0 < number of times pregnant ≤ 2 are
among the key indicators for classifying positive diabetes, whereas 21 ≤ age ≤ 22 and
number of times pregnant ≤ 0 strongly indicate negative diabetes. On the other hand,
we were able to deduce that 2-hour serum insulin is not a strong indicator for either
classes, which implies that data scientists can perform certain feature engineering on
the data set to improve the results. Note that the data set only contains 768 data entries
(patients), so the analysis may not be representative for a large population. Nonetheless,
our implementation demonstrates the feasibility of the proposed method and shows
that the combination of machine learning and automated reasoning has the potential to
provide a new explainable and dependable data analysis technology.

References
1. Maria Paola Bonacina. Automated reasoning for explainable artificial intelligence. In AR-

CADE Workshop (in association with CADE-26), Gothenburg, Sweden, 2017.
2. Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017.
3. Dependable Intelligence. Silas. https://www.depintel.com/silas_about.html, 2018.
4. Daniel Kühlwein, Jasmin Christian Blanchette, Cezary Kaliszyk, and Josef Urban. Mash:

machine learning for sledgehammer. In ITP, pages 35–50. Springer, 2013.
5. Szilard Pafka. A minimal benchmark for scalability, speed and accuracy of commonly used

open source implementations of the top machine learning algorithms for binary classification.
https://github.com/szilard/benchm-ml, 2018.

6. Philip Wadler. Propositions as types. Communications of the ACM, 58(12):75–84, 2015.
7. Chongsheng Zhang, Changchang Liu, Xiangliang Zhang, and George Almpanidis. An up-

to-date comparison of state-of-the-art classification algorithms. Expert Systems with Applica-
tions, 82:128–150, 2017.


