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Abstract—Nowadays there are a wealth of devices and cameras
at sports venues and facilities that collect different forms of
data. Mining useful insights from such data are crucial for
improving the performance of professional athletes. In this paper,
we introduce a new interactive tennis analytics framework that
can realistically simulate tennis matches using parameters mined
from past match data and help reveal in-depth knowledge about
tennis strategies. Our approach uses probabilistic model checking
to formally evaluate the effectiveness of various strategies and
tactics and recommend the best ones for improving players’
chances of winning. Our framework is easily understandable
and actionable by players and coaches at any level. We have
performed evaluations on tennis matches over the past decade to
show the effectiveness of our strategy analytics framework.

Index Terms—sports analytics, tennis, strategy, match predic-
tion, Markov decision process, probabilistic model

I. INTRODUCTION

Two days before the 2018 US Open fourth round, John

Millman, ranked No.55 at the time, was facing the then world’s

No.2 and 20-time Grand Slam winner Roger Federer. Given

Federer’s 40-0 record against players ranked below NO.50

and Millman’s 0-10 record against the top 10, the media

thought Millman had no chance. We sent Millman an analytics

profile, highlighting Federer’s serving and returning patterns

in crucial, high-pressure situations like breakpoints, as well

as his strengths, weaknesses, and preferred playing patterns.

Against all odds, Millman won 3-1 to secure his first-ever

Grand Slam quarterfinal appearance. This paper describes the

research behind the analysis and beyond.

The key challenge in sports analytics is how to extract

valuable information from limited historical data and gain

insightful knowledge to improve winning chances. This is

especially crucial in racket sports like tennis, where opponent-

specific strategies are vital. Sports tactics involve adjusting

playing patterns and training on specific sub-skills . A strategy
comprises a collection of tactics employed to gain an advan-

tage in a match, and an effective strategy can aid players in

defeating stronger opponents.

Compared to existing works, our paper focuses on providing

opponent-specific strategy recommendations that are easily un-

derstandable and applicable. Additionally, we employ formal

verification to evaluate the effects of these recommendations.

In contrast, prior works often evaluate individual actions based

on their impact on game outcomes, considering contextual

factors such as player positions, speeds, and ball velocity

[1], [2]. Some studies also provide insight analytics such as

decision analysis [3], finding optimal policies [4], and player

ratings [5]. However, the application of these strategies in real-

world sports games can be challenging due to their complexity

or the absence of formal verification. Consequently, it is hard

for players and coaches to trust and apply these analytics.

In tennis, a player’s winning chance depends on the relia-

bility of his sub-skills (e.g., serving, returning) [6]. Moreover,

a player may have different playing patterns against different

opponents. Our approach employs Markov Decision Processes

(MDP) to model tennis matches, which incorporates various

match information such as player types and possible actions.

The probability distributions and success rates of these actions

are mined from historical data. With the learned model, we

can conduct deep strategy analytics, including identifying op-

timal actions for improvement, via the PAT (Process Analysis

Toolkit) model checker [7]. To our knowledge, our approach

is the first to apply probabilistic model checking (PMC) to

tennis analysis.

To assess the effectiveness of our proposed strategies, we

use the MDP model to predict match outcomes and examine

the changes in winning probability when different strategies

are applied. We validate our predictions using a decade of ATP

and WTA tennis matches. Additionally, we conduct experi-

ments comparing our recommended strategies to real player

adjustments based on historical data. Our findings demonstrate

strong alignment between our recommendations and strategy

changes made by top players who have significantly improved

their games. This work makes the following contributions.

• We introduce a novel tennis analytics framework that utilizes

MDP and PMC. This framework strikes a balance between

model accuracy and explainability, making it accessible and

useful for players and coaches.

• We conduct a comprehensive evaluation using tennis

matches over the past 10 years to validate the performance

of match outcome predictions as well as the effectiveness

and insightfulness of the recommended strategies.

II. RELATED WORK

A. Sports analytics in racket sports

Previous works have employed computer vision and video

analytics techniques to detect the court [8], track players and

the ball [9], and detect key events [10] in broadcast videos.

Other studies have aimed to predict the next shot location

based on the current context and historical data [11]. In the

field of strategy analytics, Terroba et al. [4] presented an

MDP-based framework using the Monte Carlo tree search to
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Fig. 1. Tennis court and related terminologies.

find optimal policies. Wang et al. [12] focused on evaluating

individual actions by determining the expected probability

of winning a rally, considering various contextual features

such as player locations, movement speeds, and ball speed

in continuous space. Wang et al. [13] evaluated actions by

categorizing table tennis shots as “good” or “bad” based on

expert knowledge and evaluated actions using video clips.

However, these works can hardly be applied in real-world due

to their complexity and the lack of formal verification.

B. Winning probability prediction

Kovalchik [14] classified prediction models into three cate-

gories: regression-based, point-based, and paired comparison.

These models have been compared with bookmaker odds.

Regression-based models aim to find features that are highly

correlated with match outcomes and predict winning probabili-

ties using regression algorithms. Point-based methods estimate

the probability of winning a match by first estimating the

probability of winning a single point and then using Markov

chains to compute the probability of winning the entire

match. Paired comparison methods aggregate past matches

between players to determine their relative strength rankings

and forecast future match results. However, existing methods

primarily concentrate on predicting match outcomes and lack

the capability to perform strategy analysis. In contrast, our

approach not only accurately predicts match results, but also

provides insightful analysis of players’ strategies.

III. PRELIMINARIES

Here we introduce tennis technical terms from the USTA1.

A standard tennis court is depicted in Fig. 1. Each side of the

court can be divided into three regions: the deuce court (De),

the middle court (Mid), and the ad court (Ad). Additionally,

the service box is defined by the boundaries of the net, service

line, center service line, and single sideline. It includes three

sub-regions, the T, Body, and Wide. The initial shot of a point

is called a “serve”. The server can serve to either the receiver’s

right-hand side, named “deuce court serve” (De Serve), or

the left-hand side, named “ad court serve” (Ad Serve). The

server can hit the ball to T, B, or W area of the service box.

1https://www.usta.com/en/home/improve/tips-and-instruction.html

If the first serve fails, the player will have a second chance

(De/Ad Serve 2nd). The shot taken by the receiver after a

serve is called a “return” (R). Subsequent shots are referred

to as “strokes” (Stroke). Players can hit the ball cross-court

(CC), down the line (DL), down the middle (DM), inside-

in (II) or inside-out (IO) using either their forehand (FH) or

backhand (BH).

IV. THE PROPOSED APPROACH

Our tennis strategy analytics method is outlined in Fig. 2.

We start by collecting data from online sources using video an-

alytics, streamlining the data collection process. Subsequently,

we model a tennis match as an MDP, enabling simulations

for any pair of players. The constructed MDP model is

implemented in the PCSP# language and can be used to

predict match outcomes and perform strategy analytics through

probabilistic model checking.

A. Mining data from online sources and videos

The dataset employed in our study consists of detailed shot-

by-shot descriptions of both players, which are fundamental

in constructing tennis models. To collect the data, we gather

information from diverse sources. We first obtained our dataset

from tennisabstract.com, which is an online data source that

collects and manually labels more than 10,000 ATP and

WTA matches since 1959 with detailed match information.

However, there is still a shortage of detailed shot-by-shot

information for many matches. To enhance data coverage, we

have applied deep learning based video analytics techniques

to automatic extraction of detailed shot-by-shot data from

broadcast videos. Overall, we have collected data for the

past 12 years (2011-2022), encompassing 8,076 professional

matches, 1,073 players, and a total of 6,036,382 shots.

B. Modeling tennis matches in MDP

Modeling tennis matches requires a delicate balance be-

tween precision and efficiency. Our modeling approach ad-

dresses these needs by providing an expressive representation

and powerful analytical capability. In this paper, we focus

on singles tennis matches featuring two players, denoted as

P1 and P2. To predict match outcomes, we analyze the

winning probability in a simplified tiebreak game, serving as

an abstraction of the entire match. In this simplified tiebreak

game, the first player to reach 7 points wins. We operate on

the premise that the player most likely to win the tiebreak

game is also favored to win the overall match. This abstraction

facilitates efficient performance verification using PAT.

We model a tennis match using a MDP based on expert

tennis knowledge. States and actions are defined using tennis

terminology (as detailed in Section III), ensuring the model’s

accessibility to players and coaches for strategy analysis. The

model considers various factors such as court location, player

type (right-hander or left-hander), and diverse shot types. The

individual components of the MDP are outlined below.

State space. A state represents the moment when a player

hits the ball. The states are categorized into 4 types: serve,
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Fig. 2. The system pipeline of our approach.

return, stroke, and termination. Serve states encompass four

types: first deuce court serve, second deuce court serve (if the

first serve fails), first ad court serve, and second ad court serve.

Return states also have 4 types: forehand/backhand return of a

deuce/ad court serve. Stroke states encompass deuce/middle/ad

court stroke. A termination state signifies that either player has

won the tiebreak game, with possible scores such as 7-1 (P1
wins), 5-7 (P2 wins), and 7-6 (P1 wins).

Action space. For each state s, there are a set of possible

actions that can be taken by a player based on his location

at the court as well as the handedness. There are in total 16

actions, including:

• First/Second serve to T, B, W;

• Fore/Backhand (FH/BH): cross-court (CC), down the line

(DL), down the middle (DM), inside-out (IO), inside-in (II).

Transition function. The transition function P : S × A ×
S → [0, 1] denotes the probability of going to a new state.

There are 3 possible outcomes for each state-action pair: in
(action succeeds but does not directly lead to winning a point),

winner (action directly leads to winning a point), or error
(action fails). If an action is winner or error, the process will

transition to a new state for the next serve and add a point to

the winner of the rally. If one of the players reaches 7 points,

it will transition to the termination state. While if an action

is in, it will transition to a non-termination state based on the

current state and action taken.

Policy. The policy π denotes the probability distribution

over all possible actions for each state: π(a|s) = Pr(A =
a|S = s). It represents how players choose different actions

in each state. For example, a serving policy could be 60%

serve to T, 30% serve to W, and 10% serve to B.

We learn the policy and transition probabilities for MDP

from historical data. The policy is computed by Pr(a|s) =
N(s,a)
N(s) ; while the transition probability is computed by

Pr(s′|s, a) = N(s,a,s′)
N(s,a) , where N(s) denotes the number of

times a player has visited state s, N(s, a) is the number

of times a player has performed action a in state s, and

N(s, a, s′) is the number of times a player has performed a
from state s and resulted in state s′.

Alternative models. There are alternative methods for mod-

eling a tennis match. For instance, we have built models2 that

2https://github.com/LZYAndy/Insight Strategy/blob/main/tennis complex.
txt

Fig. 3. A partial MDP model demonstrating a serve.

incorporate front/backcourt distinctions and strategic choices

like approach shots, drop shots, and volleys. Additionally, we

also have models that take into account different pressure

levels associated with varying scores.

However, in this paper, we opted to present a 6-region model

without point-level analytics for ease of player memorization

and integration of our data processing methods. In a real

tennis match, it is important to avoid overwhelming players

with excessive information that could potentially result in

hesitation. Fig. 3 shows a partial example of our MDP model,

where P1 takes the first serve from the ad court with three

possible actions (i.e., 41% serve T, 10% serve B, and 49%

serve W). Each action contains three possible outcomes (i.e.,

in, error, winner) with corresponding transition probabilities

leading to different next states. Due to space constraints, we do

not show the implementation of the MDP model in the PCSP#

language. Please refer to the full PCSP# implementation here3.

C. Strategy recommendations

By utilizing the ability to assess the impact of changes to

various actions, we can recommend strategies to improve a

player’s winning chance based on sensitivity analysis from

probabilistic model checking. There are mainly two types of

strategies, which we can determine through Algorithm 1.

Pre-match strategy. The first type of strategy concerns

detailed tactics about play patterns. Technically, it is related to

the probability distributions of actions. For example, one can

shift 10% T serves to W serves against a particular opponent if

3https://github.com/LZYAndy/Insight Strategy/blob/main/tennis.txt
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Algorithm 1: Computing the optimal strategy.

Data: current state s, policy π, percentage change δ%,
maximum increase in winning chance Δmax

Result: abest (the best action to increase in state s)
1 Δmax ← −∞; abest ← None;
2 for a ∈ π(s) do
3 if pre-match strategy then

// pre-match strategy
// add action a’s percentage by δ%

4 Pr(a|s)← Pr(a|s) + δ%;
5 for a′ ∈ π(s) \ [a] do
6 Pr(a′|s)← Pr(a′|s)− δ%

|π(s)| ;
7 else

// training strategy
// reduce action a’s error by δ%

8 Pr(in|s, a)← Pr(in|s, a) + δ%;
9 Pr(err|s, a)← Pr(err|s, a)− δ%;

// compute increase in winning chance
10 Δpwin ← increase in winning chance;

// update the best action to increase
11 if Δpwin > Δmax then
12 Δmax = Δpwin; abest = a;

the historical data shows the opponent is weaker in returning

W serves. As coaching is prohibited during a tennis match,

we name the first type of strategy “pre-match strategy” as it

can be directly applied by a player before the match begins

without changing the reliability (i.e., success rate) of his/her

sub-skills. The strategy is shown in Algorithm 1, where we can

find the best action to increase in each state (e.g., P1 should

play more forehand cross-court in the deuce court against P2).

Training strategy. The second type of strategy is to increase

the success rates for certain types of shots via targeted training.

Therefore, we name it “training strategy”. This type of strategy

may not be applicable immediately before a match as a player

cannot suddenly be good at a skill. For example, before

playing against Nadal who is known for his powerful forehand,

Federer may focus on training his backhand down-the-line

shots at the ad court so that he can reduce the error by

2%. Such a strategy not only increases Federer’s backhand

success rate but also reduces Nadal’s forehand threat because

the down-the-line shot leads to Nadal’s backhand.

V. EVALUATION

We used the PAT model checker to implement our model

and carried out evaluations on actual professional tennis

matches to assess the performance of our strategy analytics

approach. Our experiments are designed around the following

three sections:

A. How accurate is the model in predicting players’ winning
chances when playing against different opponents?

To predict one’s winning probability against a particular

player, our framework provides flexibility to extract data from

interested matches before the date of a target match. For

instance, consider predicting a match between players P1 and

P2, with Elo rankings [15] e1 and e2, respectively. To gather

data for P1, we collect information from matches between

TABLE I
BETTING RESULTS OVER THE PAST 10 YEARS.

δelo (±) Num of bets Profits ROI Annualized ROI

50 461 $10,592 105.92% 7.49%
100 1,388 $30,385 303.85% 14.98%
150 2,177 -$8,194 -81.94% -15.73%
200 2,871 -$8,471 -84.71% -17.12%

P1 and opponents similar to P2 over the past two years . We

define ”similar” as the opponents should have (1) the same

handedness as P2, and (2) Elo rankings fall within the range

of [e2− δelo, e2 + δelo], where δelo ∈ N. We follow the same

approach to gather data for P2. Once we have selected the

related historical matches, we can construct the MDP model

and predict the match outcome. The processing time for a

match is usually about 1 second.

1) Betting simulation: We adopt the bookmakers’ odds4

as our baseline as it currently represents the state-of-the-

art approach in the field. In our experiment, we apply a

well-established betting strategy – Kelly criterion [16]. To

evaluate the profitability, we calculate the return on invest-

ment (ROI) and the annualized ROI. The initial bankroll is

$10,000. We explore various constraints on the range of Elo

ranking differences δelo ∈ [50, 200] when selecting related

historical matches. When the value of δelo is small, the selected

matches are of higher quality but the quantity may be limited.

Conversely, as δelo increases, a greater number of matches

are included, although they may be less directly related to the

target matches.

Our betting strategy focuses on matches that have a mini-

mum of 4 relevant historical matches for each player to ensure

prediction accuracy. The outcomes of the betting simulations

are presented in Table I. Analysis of the table reveals that

the models with δelo = 50 and 100 make long-term profits.

However, a further increase in δelo results in negative prof-

itability. The reason is that the selected historical matches ex-

hibit lower relevance to the targeted players. This experiment

demonstrates that our model has an excellent performance in

predicting the winning probability of tennis matches.

2) Comparison with existing works: A reliable winning

probability prediction model should provide well-calibrated

estimations that align with real-world outcomes. Traditional

measures like accuracy and log-loss do not adequately reflect

the actual winning probabilities. To address this, we evaluate

the models’ predictions using the expected calibration error

(ECE) [17], which measures the disparity between predicted

probabilities and observed outcomes.

We assess the performance of our model with δelo = 100
against other well-established match outcome prediction mod-

els as mentioned in Section II-B, including a point-based

method [18], a paired comparison method [15], and the

bookmakers. As shown in Table II, our model has the best

performance with the lowest ECE of 0.0099.

4http://www.tennis-data.co.uk/
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TABLE II
ECE SCORES FOR DIFFERENT METHODS.

Method ECE (5 bins)

Point-based [18] 0.0973
Paired comparison [15] 0.0317
Bookmakers 0.0207
Our method 0.0099

B. Does our model provide effective pre-match and training
strategies to increase players’ winning chances?

Our system enables users to assess the impact of various

pre-match or training strategies on their performance, aiding

players in identifying the most effective means of improve-

ment. However, gauging the real-world effectiveness is a

challenge, as we can hardly request professional players to

apply our strategies. Thus, we evaluate based on observations

from historical data.

Consider the 16 recorded matches between Roger Federer

and Rafael Nadal from 2011 to 2022. Before 2017, Federer

only won 2 out of 10 matches, but after 2017, he won 5 out

of 6 matches. Upon analyzing Federer’s actions and sub-skill

reliability, a notable difference is observed before and after

2017. To determine if this improvement is due to changes

in strategy, we created two MDP models based on historical

data before and after 2017, respectively. Using PMC, we then

calculated Federer’s winning rate, and the results were 35.7%

and 53.2% respectively, which match the actual results.

Furthermore, we want to see whether our system can help

players to identify pre-match and training strategies to achieve

optimized improvements in the future. Our idea is to test the

following:

• For pre-match strategy, identify the best action to increase

in each state by modifying probability distributions.

• For training strategy, identify the best action to improve/train

on in each state by modifying success rates.

• Check whether the player has indeed increased/improved on

the identified actions later on.

We applied the above idea to all 11 states for both pre-

match and training strategies. The results showed that: (1)

for pre-match strategy, 9 out of 11 best actions identified

by our method match Federer’s actual adjustments; and (2)

for training strategy, 8 out of 11 recommended improvement

actions align with Federer’s actual improvements in terms of

increasing action success rates.

To further validate our approach, we collected additional

examples similar to Federer against Nadal and used the same

validation method. These examples should follow the pattern

where a player has a significant increase in win rate against

a specific player after a certain time point. We use the data

before that point to generate recommendations and use the

data after that point to validate our recommendations. Table III

summarizes the empirical results, demonstrating that a major-

ity of our recommendations align with players’ actual strategy

adjustments and improvements. Hence, we can conclude that

our strategy analytics are reasonable and effective.

C. What new insights a player/coach can get from our strategy
recommendations?

One may argue that our recommendations largely overlap

with what pro athletes already do. However, these valuable

insights may not be easily accessible to players without the

same level of coaching staff and resources. Our goal is to

make high-quality strategy analysis accessible to the broader

tennis community. In this section, we will delve deeper into

the insights generated by our system and show how players

and coaches can benefit from them.

Our system can generate opponent-specific strategy recom-

mendations for different player matchups. Table IV presents

examples of our pre-match and training strategy suggestions.

It is important to note that we only present the most effective

strategy in each state, which corresponds to the action that

yields the highest gains when increasing the probability distri-

butions or success rates by 2%. Our strategy recommendations

exhibit remarkable diversity across different matchups. For

instance, we suggest distinct pre-match strategies for Zverev

against different opponents, such as employing more forehand

cross-court (FH CC) against Nadal and forehand down the line

(FH DL) against Federer in the De Stroke state. Moreover,

when different players face the same opponent, our system

recommends Wawrinka to increase his forehand inside-out

(FH IO) and Cilic to increase his backhand down the line

(BH DL) at Ad Stroke when playing against Djokovic.

Sometimes our method can generate “unusual” (novel)

strategy suggestions that players/coaches may not be aware of.

For instance, by analyzing matches between Roger Federer and

Andy Murray before 2014, our system suggests that Federer’s

most effective pre-match strategy was to play more backhand

down the line to Murray’s forehand, despite the common belief

that attacking the opponent’s backhand side is better. But in

fact, after 2014, Federer did not lose any match against Murray

and indeed increased backhand down the line by 4.8%.

In addition, even if players/coaches are aware of the sub-

skills they need to work on, they may not know the precise ad-

justments/improvements needed to effectively maximize their

winning chances. Our system can calculate precise numbers

for these improvements. One potential application is to assist

players in customizing their training in a more effective

manner.

VI. CONCLUSION

In this paper, we have presented a novel MDP framework for

tennis to conduct strategy analytics using probabilistic model

checking. Our methodology is adaptable to other sports5 such

as badminton, table tennis, and soccer.

Compared to existing methods, our MDP-based model

connects match outcomes with the reliability and probability

distribution of individual sub-skills for both players, using

5https://github.com/LZYAndy/Insight Strategy
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TABLE III
SYSTEM SUGGESTED ACTIONS FOR IMPROVEMENT COMPARED WITH PLAYERS’ ACTUAL STRATEGY ADJUSTMENTS. “WIN%” DENOTES THE WINNING

CHANCE. “ALIGN I” DENOTES THE FRACTION OF OUR PRE-MATCH SUGGESTIONS THAT ALIGN WITH PLAYERS’ ACTUAL STRATEGY ADJUSTMENTS.
“ALIGN T” DENOTES THE FRACTION OF OUR TRAINING SUGGESTIONS THAT ALIGN WITH PLAYERS’ ACTUAL SUB-SKILL IMPROVEMENTS.

Player Opponent Turning-point year Win% before year Win% after year Align I Align T

Federer R. Nadal R. 2017 20.0% 83.3% 9/11 8/11
Nadal R. Djokovic N. 2017 26.1% 60.0% 7/11 8/11
Murray A. Nadal R. 2015 14.3% 50.0% 10/11 8/11
Zverev A. Tsitsipas S. 2021 20.0% 50.0% 8/11 7/11
Djokovic N. Tsitsipas S. 2020 50.0% 100.0% 9/11 8/11
Djokovic N. Medvedev D. 2021 50.0% 100.0% 9/11 7/11
Zverev A. Federer R. 2018 33.3% 66.7% 8/11 9/11
Thiem D. Federer R. 2019 50.0% 100.0% 7/11 10/11
Cilic M. Djokovic N. 2016 0.0% 33.3% 8/11 8/11

TABLE IV
DIFFERENT PRE-MATCH AND TRAINING STRATEGIES AT EACH STATE.

Player Opponent De Serve De Serve 2nd Ad Serve Ad Serve 2nd De FHR Ad FHR De BHR Ad BHR De Stroke Mid Stroke Ad Stroke

Pre-match Strategy
Zverev A. Nadal R. T T W W DL IO CC CC FH CC FH IO FH DM

Zverev A. Federer R. T T T T CC DM II DM FH DL FH CC BH DL

Wawrinka S. Djokovic N. W B T W CC II IO DL BH II BH IO FH IO

Cilic M. Djokovic N. T T B W DL CC DM DL FH CC FH IO BH DL

Training Strategy
Thiem D. Djokovic N. T T W W CC CC IO DL FH CC FH CC BH DL

Thiem D. Federer R. W T T W DL II DM CC FH DL FH IO BH CC

video analytics techniques to obtain shot-by-shot data from

past matches. We strike a balance between accuracy and ex-

plainability so players and coaches can easily understand and

apply our recommendations. We have evaluated the effective-

ness of our strategies from multiple angles, such as comparing

match prediction results with bookmakers’ predictions and

players’ actual strategy adjustments. We also demonstrate the

insightfulness of our proposed strategies through real-world

examples and potential applications.
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